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Preface

This manual is about using the software package called gretl to do var-
ious econometric tasks required in a typical two course undergraduate or
masters level econometrics sequence. It is written specifically to be used
with Principles of FEconometrics, 3rd edition by Hill, Griffiths, and Lim,
although it could be used with many other introductory texts. The data for
all of the examples used herein are available as a package from my website
at http://www.learneconometrics.com/gretl.html. If you are unfamil-
iar with gretl and are interested in using it in class, Mixon Jr. and Smith
(2006) have written a brief review of gretl and how it can be used in an
undergraduate course that you may persuade you to give it a try.

The chapters are arranged in the order that they appear in Principles of
FEconometrics. Each chapter contains a brief description of the basic models
to be estimated and then gives you the specific instructions or gretl code to
reproduce all of the examples in the book. Where appropriate, I've added
a bit of pedagogical material that complements what you’ll find in the text.
I've tried to keep this to a minimum since this is not supposed to serve as
a substitute for your text book. The best part about this manual is that it,
like gretl, is free. It is being distributed in Adobe’s pdf format and I will
make corrections to the text as I find errors.

To estimate a few of the models in POE I've had to resort to another
free software called R. As gretl develops I suspect that this small reliance
on R will diminish. In any event, gretl contains a utility that makes using
R quite easy. You’'ll find an appendix in this book that will get you started.
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Gretl also gives users an ability to write his or her own functions, which
greatly expands the usefulness of the application. In Chapters 14 and 16
functions are used to estimate a few of the models contained in POE. What’s
more, functions can be shared and imported easily through gretl, especially
if you are connected to the internet. If gretl doesn’t do what you want it
to now, stay tuned. It soon may. If recent activity is any indication, I am
confident that the the gretl team will continue to improve this already very
useful application. I hope that this manual is similarly useful to those using
Principles of Econometrics.

I want to thank the gretl team of Allin Cottrell and Riccardo “Jack”
Lucchettii for putting so much effort into gretl. It is a wonderful program
for teaching and doing econometrics. It has many capabilities beyond the
ones I discuss in this book and other functions are added regularly. Also,
Jack has kindly provided me with suggestions and programs that have made
this much better than it would have been otherwise. Any errors, of course,
are mine alone.

Finally, I want to thank my good friend and colleague Carter Hill for
suggesting I write this and Oklahoma State University for continuing to pay
me while I work on it.

Copyright (© 2007 Lee C. Adkins.
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Chapter

Introduction

In this chapter you will be introduced to some of the basic features of
gretl. You’ll learn how to install it, how to get around the various windows
in gretl, and how to import data. At the end of the chapter, you’ll be
introduced to gretl’s powerful language.

1.1 What is Gretl?

Gretl is an acronym for Gnu Regression, Econometrics and Time-series
Library. It is a software package for doing econometrics that is easy to
use and reasonably powerful. Gretl is distributed as free software that
can be downloaded from http://gretl.sourceforge.net and installed on
your personal computer. Unlike software sold by commercial vendors (SAS,
Eviews, Shazam to name a few) you can redistribute and/or modify gretl
under the terms of the GNU General Public License (GPL) as published by
the Free Software Foundation.

Gretl comes with many sample data files and a database of US macroe-
conomic time series. From the gretl web site, you have access to more
sample data sets from many of the leading textbooks in econometrics, in-
cluding ours Principles of Econometrics by Hill et al. (2008). Gretl can
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be used to compute least-squares, weighted least squares, nonlinear least
squares, instrumental variables least squares, logit, probit, tobit and a num-
ber of time series estimators. Gretl uses a separate Gnu program called
gnuplot to generate graphs and is capable of generating output in LaTeX
format. As of this writing gretl is under development so you can probably
expect some bugs, but in my experience it is pretty stable to use with my
Windows XP systems.

1.1.1 Installing Gretl

To install gretl on your system, you will need to download the appropri-
ate executable file for the computer platform you are using. For Microsoft
Windows users the appropriate site is http://gretl.sourceforge.net/
win32/. One of the nice things about gretl is that Macintosh and Linux
versions are also available. If you are using some other computer system, you
can obtain the source code and compile it on whatever platform you’d like.
This is not something you can do with any commercial software package
that I've seen.

Gretl depends on some other (free) programs to perform some of its
magic. If you install gretl on your Mac or Windows based machine using
the appropriate executable file provided on gretl’s download page then ev-
erything you need to make gretl work should be installed as part of the
package. If, on the other hand, you are going to build your own gretl using
the source files, you may need to install some of the supporting packages
yourself. I assume that if you are savvy enough to compile your own version
of gretl then you probably know what to do. For most, just install the
self-extracting executable, gretl_install.exe, available at the download
site. Gretl comes with an Adobe pdf manual that will guide you through
installation and introduce you to the interface. I suggest that you start with
it, paying particular attention to Chapters 1 and 2 which discuss installation
in more detail and some basics on how to use the interface.

Since this manual is based on the examples from Principles of Econo-
metrics, 3rd edition (POE ) by Hill et al. (2008), you should also download
and install the accompanying data files that go with this book. The file is
available at


http://gretl.sourceforge.net/win32/
http://gretl.sourceforge.net/win32/

CHAPTER 1. INTRODUCTION 3
http://www.learneconometrics.com/gretl/poesetup.exe.

This is a self-extracting windows file that will install the POE data sets
onto the c:\userdata\gretl\data directory of your computer’s harddrive.
If you have installed gretl in any place other than c:\userdata\gretl then
you are given the opportunity to specify a new location in which to install
the program during setup.

1.1.2 Gretl Basics

There are several different ways to work in gretl. Until you learn to
use gretl’s rather simple and intuitive language syntax, the easiest way to
use the program is through its built in graphical user interface (GUI). The
graphical interface should be familiar to most of you. Basically, you use
your computer’s mouse to open dialog boxes. Fill in the desired options and
execute the commands by clicking on the OK button. Those of you who
grew up using MS Windows or the Macintosh will find this way of working
quite easy. Gretl is using your input from the dialogs, delivered by mouse
clicks and a few keystrokes, to generate computer code that is executed in
the background.

Gretl offers a command line interface as well. In this mode you type
in valid gretl commands either singly from the console or in batches using
scripts. Once you learn the commands, this is surely the easiest way to
work. If you forget the commands, then return to the dialogs and let the
graphical interface generate them for you.

There is a command line version of gretl that skips the dialogs alto-
gether. The command line version is launched by executing gretlcli in a
dos command window. In Windows choose Start>Run to open the dialog
shown in figure 1.1. In the box, use Browse button to locate the directory
in which gretl is installed. Click OK and the command line version shown
in figure 1.2 opens. This version of the program is probably the most useful
for Linux users wishing to run gretl from a terminal window. We won’t be
using it in this manual.

A better way to execute single gretl commands is through the gretl
console. In normal practice, the console is a lot easier to use than the


http://www.learneconometrics.com/gretl/poesetup.exe
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Figure 1.1: Opening the command line interface version of gretl using
Start>Run

-Run @@

- Type the name of a program, Folder, document, or
5 Internet resource, and Windows will open it far wou,

CIpen: Cuserdakaiaretliareticli, exe v

K, ][ Cancel ][ Browse, .,

Figure 1.2: The command line version of gretl

userdata\gretgretlcli.exe

gretl version 1.6.5

Copyright Ramu Ramanathan, Allin Cottrell and Riccardo “Jack" Lucchetti
This is free software with ABSOLUTELY NO WARRANTY

Current session: 2887-88-14 BB8:24

Couldn’t open registry

"help" gives a list of commands
Type "open filename" to open a data set
2
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gretlcli. It offers some editing features and immediate access to other ways
of using gretl that aren’t available in the straight command line version of
the program. The console and its use is discussed in section 1.3.1.

If you want to execute a series of commands, you do this using scripts.
One of the great things about gretl is that it accumulates commands exe-
cuted singly from the console into a command log that can be run in its
entirety at another time. This topic can be found in section 1.3.2. So, if you
have completed an analysis that involves many sequential steps, the script
can be open and run in one step to get the desired result.

You can use the script environment to conduct Monte Carlo studies
in econometrics. Monte Carlo studies use computer simulation (sometimes
referred to as experiments) to study the properties of a particular technique.
This is especially useful when the mathematical properties of your technique
are particularly difficult to ascertain. In the exercises below, you will learn
a little about doing these kinds of experiments in econometrics.

In Figure 1.3 below is the main window in gretl.

Figure 1.3: The main window for gretl’s GUI

“grell E]@
Ele Tools *_ mnu w Help

No datafile loaded

ID # | Varisble name | Descriptive label

EBEREOFRETe |l F O dA— Tool Bar
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Across the top of the window you find the menu bar. From here you
import and manipulate data, analyze data, and manage output. At the
bottom of the window is the gretl toolbar. This contains a number of useful
utilities that can be launched from within gretl. Among other things, you
can get to the gretl web site from here, open the pdf version of the manual,
or open the MS Windows calculator (very handy!). More will be said about
these functions later.

1.1.3 Common Conventions

In the beginning, I will illustrate the examples using a number of figures
(an excessive number to be sure). These figures are screen captures of gretl’s
windows as they appear when summoned from the pull-down menus. As
you become familiar with gretl the frequency of these figures will diminish
and I will direct you to the proper commands that can be executed in the
console or as a script using words only. More complex series of commands
may require you to use the gretl script facilities which basically allow you to
write simple programs in their entirety, store them in a file, and then execute
all of the commands in a single batch. The convention used will be to refer
to menu items as A>B>C which indicates that you are to click on option A
on the menu bar, then select B from the pull-down menu and further select
option C from B’s pull-down menu. All of this is fairly standard practice,
but if you don’t know what this means, ask your instructor now.

1.2 Importing Data

Obtaining data in econometrics and getting it into a format that can be
used by your software can be challenging. There are dozens of different pieces
of software and many use proprietary data formats that make transferring
data between applications difficult. You’ll notice that the authors of your
book have provided data in several formats for your convenience. In this
chapter, we will explore some of the data handling features of gretl and
show you (1) how to access the data sets that accompany your textbook (2)
how to bring one of those data sets into gretl (3) how to list the variables
in the data set and (4) how to modify and save your data. Gretl offers
great functionality in this regard. Through gretl you have access to a very
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large number of high quality data sets from other textbooks as well as from
sources in industry and government. Furthermore, once opened in gretl
these data sets can be exported to a number of other software formats.

First, we will load the food expenditure data used in Chapter 2 of POE.
The data set contains two variables named z and y. The variable y is weekly
expenditures on food in a household and z is weekly income measured in
$100 increments.

Open the main gretl window and click on File>Open data>sample
file as shown in Figure 1.4.

Figure 1.4: Opening sample data files from gretl’s main window

Elaret == %]
File  Tools Help
Open data Y B userfile... Chrl0
= Sample file... %
Irnport 3
1. food.gdt
] 2, grunfeld.gdt
[ uew data st Chrl+N 3. nls_panel.gdt
4., grunfeldz.gdt
k"
Scripk Files 3
Session files »
Databases 3
Function files 3

ol Exit Chrl43

The open dataset button takes you
directly to the sample files

EEOFRERe = & Q

Alternately, you could click on the open dataset button on the toolbar.
The button looks like a folder and is on the far right-hand side of the toolbar.
This will open another window (Figure 1.5) that contains tabs for each of
the data compilations that you have installed in the gretl/data directory
of your program. If you installed the data sets that accompany this book
using the self extracting windows program then a tab will appear like the
one shown in Figure 1.5.
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Figure 1.5: This is gretl’s data files window. Notice that in addition to
POE, data sets from Ramanathan (2002), Greene (2003), Stock and Watson
(2006) are installed on my system.

“ gretl: data files E]@

& 0 x

Gretl | Greene | POE |Ramanathan || Stock-wWatson | Stock-watson Ze

File Summary il
Fair Exercise £.14, 3.9, 4,11, 5,11, £.18, /.15

Figure-3 FiqureC-3

flarida Exercise 4,16

food Chapters 2,3,8; Exercises §.10, 8,11

Fullmoon Exercise 7.2 =
fultonfish Chapter 11, Exercises 11.11, 11,12, C.11

gascar Exercise 15,5

gasga Exercise 3,16

qdp Chapter 13; Exercise 13.4

qgald Exercise 14,9

qolf Exercise 7.12

growth Chapter 13; Exercise 13.5

grunfeld Chapter 15, Exercise 15,8

grunfeldz Chapter 15 ™
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Click on the POE tab and scroll down to find the data set called ‘food’,

highlight it using the cursor, and open it using the ‘open’ button & at
the top of the window. This will bring the variables of the food expenditure
dataset into gretl. At this point, select Data on the menu bar and then
Display values as shown in Figure 1.6.

Figure 1.6: Use the Data>Display values>all variables to list the data
set.

Bl grent =Jo/ed
File Tools Data Yiew Add Sample Model Help
food. gdt Select all Chrl4+a
I # | Yariab Display values %
0 const | Edik values
1oy Add observations. ..
2

Read info

Print description
Add case markers. ..

Dataset skruckure, .,

Transpose data. ..

Refresh window

Undated: Full range 1 - 40

EBEOERe - £ O

From the this pull-down menu a lot can be accomplished. You can edit,
add observations, and impose a structure of your dataset. The structure
of your dataset is important. You can choose between time series, cross
sections, or panel data structures. The options Gretl gives you depend on
this structure. For instance, if your data are structured as a time series,
gretl will allow you to take lags and differences of the variables. Certain
procedures that can be used for time series analysis will only be available
to you if your dataset has been structured structured for it. If a gretl
command is not available from the defined dataset structure, then it will be
greyed out in the pull-down menus.

Notice in Figure 1.4 that gretl gives you the opportunity to import
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data. Expanding this (File>Open data>Import) gives you access to sev-
eral other formats, including ASCII, CSV, EXCEL and others. Also, from
the File pull-down menu you can export a data set to another format. If
you click on File>Databases>0On database server (Figure 1.4) you will
be taken to a web site (provided your computer is connected to the inter-
net) that contains a number of high quality data sets. You can pull any of
these data sets into gretl in the same manner as that described above for
the POFE data sets. If you are required to write a term paper in one of your
classes, these data sets may provide you with all the data that you need.

1.3 Using the gretl Language

The gretl GUI is certainly easy to use. However, you can get results
even faster by using gretl’s language. The language can be used from the
console or by collecting several lines of programming code into a file and
executing them all at once in a script.

An important fact to keep in mind when using gretl is that its language
is case sensitive. This means that lower case and capital letters have
different meanings in gretl. The practical implication of this is that you
need to be very careful when using the language. Since gretl considers z to
be different from X, it is easy to make programming errors. If gretl gives
you a programming error statement that you can’t quite decipher, make sure
that the variable or command you are using is in the proper case.

1.3.1 Console

Gretl’s console provides you a way to execute programs interactively.
A console window opens and from the prompt (?7) you can execute gretl
commands one line at a time. You can open the gretl console from the
Tools pull-down menu or by a left mouse click on the “Gretl console”

button g on the toolbar. This button is the third one on the left side of
the toolbar in Figure 1.3. From the console you execute commands, one by
one by typing gretl code after the command prompt. Each command that
you type in is held in memory so that you can accumulate what amounts to
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a “command history.” To reuse a command, simply use the up arrow key to
scroll through the commands you’ve typed in until you get to the one you
want. You can edit the command to fix any syntax errors or to make any
changes you desire before hitting the enter key to execute the statement.
From the command prompt, ‘?” you can type in commands from the
gretl language. For instance, to estimate the food expenditure model in
section 2.4 using least squares type

? ols y const x

The results will be output to the console window. You can use the window’s
scroll bar on the right hand side to scroll up if you need to.

Remember, (almost) anything that can be done with the pull-down
menus can also be done through the console. Of course, using the con-
sole requires you to use the correct language syntax, which can be found
in the gretl command reference. The command reference can be accessed
from the toolbar by clicking the button that looks like a red book. It’s the
fourth one from the right hand side of the toolbar:

I@rIEIHI@@ | & |Sil open data

+ T * User Guide
gretl website

K _ Command
esslen Reference
Console
Script
Galanleton The gretl Toolbar It is also

accessible from the menu bar through Help. The option marked plain text
F1 actually brings up all of the commands in a hypertext format. Clicking on
anything in blue will take you to the desired information for that command.
Obviously, the keyboard shortcut F1 will also bring up the command refer-
ence (Figure 1.7). Notice that you can also search for commands by topic
from the command syntax window. Select Topics and choose the desired
category from the list. This can be helpful because it narrows the list to
those things that you actually want (e.g., Topics>Estimation>ols).
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Figure 1.7: The command reference can be accessed in a number of ways:
The ‘red book’ icon on the toolbar, Help>Command reference>plain text
from the pull-down menu, or keyboard shortcut F1.

Ed gretl: command syntax E]@

File Topics Find

Gretl Command Reference
add adf append ar arbond arch arima break
hoxplot chomw coeffsum coint cointd Core CoOrr COrEom
criteria  cusum data dataset delete diff difftest discrete
durnify else end endif endloopn egqnprint edquation estimate
foast foasterr  fit freg function garch genr [sriiii]
gnuplot graph hausman heem heckit help hilu h=k
hurst if include info kpss labels lad lags
1diff leverage lmtest logistic logit logs loop mahal
meantest wmwle mwodeltalh mpols multiply nls nulldata ols
omit open outfile panel poa peErgm plot poisson
print printf probit pwalue pwe glrtest quit rensatme
resest restrict  rhodiff rmplot rumn runs socatters  Sdiff
set setinfo setobhs setmiss shell Stpl spearman sSprintf
Sguare store string SUHINRE Y system tabprint testuhat tobit
t=ls VAr varlist Vartest Ve wif wls HCOETOn
xtabh

1.3.2 Scripts

Gretl commands can be collected and put into a file that can be executed
at once and saved to be used again. This is accomplished by opening a
new command script from the file menu. The command File>Script
files>New script from the pull-down menu opens the command script
editor shown in Figure 1.8. Type the commands you want to execute in the
box using one line for each command. If you have a very long command
that exceeds one line, use the backslash (\) as a continuation command.
Then, to save the file, use the “save” button at the top of the box (first one
from the left). If this is a new file, you’ll be prompted to provide a name
for it.

To run the program, click your mouse on the “gear” button. In the
figure shown, the food.gdt gretl data file is opened. The genr commands
are used to take the logarithm of y and z, and the ols command discussed
in section 2.4 is used to estimate a simple linear regression model that has
In(y) as its dependent variable and in(z) as the independent variable. Note,
the model also includes constant.



CHAPTER 1. INTRODUCTION 13

Figure 1.8: The Command Script editor is used to collect a series of com-
mands into what gretl calls a script. The script can be executed as a block,
saved, and rerun at a later time.

B gretl: command script E]@
& & BRES @ x

open c:iuserdata’gretl’data’ poel food. gdt
Ljenr 1y = logi(v)
genr 1x = log(x)
ols ly const 1x

A new script file can also be opened from the toolbar by mouse clicking on

the “new script” button E or by using the keyboard command, Ctrl+N.!

One of the handy features of the command script window is how the
help function operates. At the top of the window there is an icon that looks

like a lifesaver . Click on the help button and the cursor changes into a
question mark. Move the question mark over the command you want help
with and click. Voila! You either get an error message or you are taken to
the topic from the command reference. Slick!

1.3.3 Sessions

Gretl also has a “session” concept that allows you to save models,
graphs, and data files into a common “iconic” space. The session window
appears below in Figure 1.9. Objects are represented as icons and these
objects can be saved for later use. When you save your session, the objects

L«Ctrl4+N” means press the “Ctrl” key and, while holding it down, press “N”.
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Figure 1.9: The session window

’“ gretl: current session g@"‘

ARG [ 1 11
[x] ]
% il g
Data info Daka set Mokes Surnmmarsy
: [ & i . ]
! : = ! :
Correlations Model table Graph page Model 2

A

Graph 1
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you have added should be available again when you re-open the session.
To add a model to your session, use the File>Save to session as icon
option from the model’s pull-down menu. To add a graph, right click on
the graph and choose the option save to session as icon. If you want
to save the results in your session, don’t forget to do so; right click on the
session window and choose Save session or from the main gretl window,
select File>Session files>Save session as shown below in Figure 1.10.

Figure 1.10: Saving a session

e BE]
File Tools Data VWiew Add Sample VYariable Model Help
Open data »
Append data b 5 ahel
@ Save data ChrHS  bated constant
Save data as » IWditUVE
Export data » fome ($100)
3 SendTo...
% Clear dataset
Script files

Sessian files
Databases
Function files

Dpen session...

Save session

- v v

Hge

Z| Save session as...
&l Exit Chrl+x

1. 1-25 gretl
2, 1-25.qgretl

Undated: Full range 1 - 40

HEOEBERe |- Q

Gretl also collects all of the commands you've executed via the GUI in
the icon labeled ‘session.” This makes it very easy to use the GUI to execute
unfamiliar commands and then use the code generated by gretl to put into
a script.

Once a model or graph is added, its icon will appear in the session
icon view window. Double-clicking on the icon displays the object, while
right-clicking brings up a menu which lets you display or delete the object.
You can browse the dataset, look at summary statistics and correlations,
and save and revisit estimation results (Models) and graphs.
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The model table is a way of combining several estimated models into a
single table. This is very useful for model comparison. From page 16 of the
gretl manual ((Cottrell and Lucchetti, 2007)):

In econometric research it is common to estimate several models
with a common dependent variable the models contain different
independent variables or are estimated using different estimators.
In this situation it is convenient to present the regression results
in the form of a table, where each column contains the results
(coefficient estimates and standard errors) for a given model, and
each row contains the estimates for a given variable across the
models.

In the Icon view window gretl provides a means of constructing
such a table (and copying it in plain text, LATEX or Rich Text
Format). Here is how to do it:

1.

Estimate a model which you wish to include in the table,
and in the model display window, under the File menu, se-

lect Save to session as iconor Save as icon and close.

. Repeat step 1 for the other models to be included in the

table (up to a total of six models).

. When you are done estimating the models, open the icon

view of your gretl session, by selecting Icon view under
the View menu in the main gretl window, or by clicking
the session icon view icon on the gretl toolbar.

In the Icon view, there is an icon labeled Model table.
Decide which model you wish to appear in the left-most
column of the model table and add it to the table, ei-
ther by dragging its icon onto the Model table icon, or
by right-clicking on the model icon and selecting Add to
model table from the pop-up menu.

. Repeat step 4 for the other models you wish to include in

the table. The second model selected will appear in the
second column from the left, and so on.

. When you are finished composing the model table, display

it by double-clicking on its icon. Under the Edit menu in
the window which appears, you have the option of copying
the table to the clipboard in various formats.
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7. If the ordering of the models in the table is not what you
wanted, right-click on the model table icon and select Clear
table. Then go back to step 4 above and try again.

In section 6.5 you’ll find an example that uses the model table and a Figure
(6.13) that illustrates the result.



Chapter

Simple Linear Regression

In this chapter you are introduced to the simple linear regression model,
which is estimated using the principle of least squares.

2.1 Simple Linear Regression Model

The simple linear regression model is
Yy =014+ 0oxr +ep t=1,2,...,T (2.1)

where y; is your dependent variable, z; is the independent variable, e; is
random error, and 31 and (s are the parameters you want to estimate. The
errors of the model, e;, have an average value of zero for each value of xy;
each has the same variance, o2, and are uncorrelated with one another. The
independent variable, z;, has to take on at least two different values in your
dataset. If not, you won’t be able to estimate a slope! The error assump-
tions can be summarized as e;|z; iid N(0,02). The expression iid stands
for independently and identically distributed and means that the errors are
statistically independent from one another (and therefor uncorrelated) and
that each has the same probability distribution. Taking a random sample
from a single population accomplishes this.

18



CHAPTER 2. SIMPLE LINEAR REGRESSION 19

2.2 Retrieve the Data

The first step is to load the food expenditure and income data into gretl.
The data file is included in your gretl sample files—provided that you have
installed the Principles of Econometrics data supplement that is available
from our website. See section 1.1.1 for details.

Figure 2.1: Food Expenditure data is loaded from food.gdt using File>0Open
data>sample file and choosing the food dataset from the sample files that
accompany POE.

—iBixi

File Utiities Session Data Sample  Yariable  Model Help |

table3-1.gdt

ID# |'\-'ariab|e name |Descriptive label |

1] consk auto-generated constant

2 *

Undated: Full range 1 - 40

] = el e o R S W RS

Load the data from the data file food.gdt. Recall, this is accomplished by
the commands File>Open data>sample file from the menu bar.! Choose
food from the list. When you bring the file containing the data into gretl
your window will look like the one in Figure 2.1. Notice that in the Descriptive
label column contains some information about the variables in the pro-
gram’s memory. For some of the datasets included with this book, it may
be blank. These descriptions, when they exist, are used by the graphing

! Alternately, you could click on the open data button on the toolbar. It’s the one that
looks like a folder on the far right-hand side.
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program to label your output and to help you keep track of variables that
are available for use. Before you graph your output or generate results for
a report or paper you may want to label your variables to make the output
easier to understand. This can be accomplished by editing the attributes of
the variables.

Figure 2.2: Highlight the desired variable and right-click to bring up the
pull-down menu shown here.

_ioix)

File Tools Data Yew Add Sample Yariable Model Help
food.gdt

D # ‘\-‘ariable narne |Descriptive label

0 consk auto-generated constant

y Food Expenditure il weliss _
Z X% ‘Weekly Income ($100) M _Y ) L
Descripkive skatistics

Frequency plok
Baxplok

Edit values
Copy to clipboard
Delete

Define new wariable. ..

< | 2]

Undated: Full range 1 - 40

& e Om @ mell] S|

To do this, first highlight the variable whose attributes you want to
edit, right-click and the menu shown in (see Figure 2.2) appears. Select
Edit attributes to open a dialog box (Figure 2.3) where you can change the
variable’s name, assign variable descriptions and display names. Describe

and label the variable y as ‘Food Expenditure’ and x as ‘Weekly Income
($100).’

You can also bring up the edit attributes dialog from the main window
by selecting Variable>Edit attributes. Finally, the setinfo command
can be used to set the Description and the label used in graphs. For andy.gdt
the commands to add such information to the data are:

setinfo S -d "Monthly Sales revenue ($1000)" \
-n "Monthly Sales ($1000)"
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Figure 2.3: Variable edit dialog box
_ioix

Mame of wariable: Iy

Descripkion:

Weekly Food Expenditure|

Display name (shown in graphs): IFnod Expenditure

Help X cancel

Figure 2.4: Use the dialog to plot of the Food Expenditure (y) against
Weekly Income (x)
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setinfo P -d "$ Price" -n "Price"

setinfo A -d "Monthy Advertising Expenditure ($1000)" \
-n "Monthly Advertising ($1000)"

labels

The -d flag is given followed by a string in double quotes. It is used to set
the descriptive label. The -n flag is used similarly to set the variable’s name
in graphs. Notice that in the first and last uses of setinfo in the example
that I have issued the continuation command (\) since these commands are
too long to fit on a single line. If you issue the labels command, gretl will
respond by printing the descriptions to the screen.

2.3 Graph the Data

To generate a graph of the Food Expenditure data that resembles the

one in Figure 2.6 of POF, you can use the H button on the gretl toolbar
(third button from the right). Clicking this button brings up a dialog to plot
the two variables against one another. Figure 2.4 shows this dialog where x
is placed on the x-axis and y on the y-axis. The result appears in Figure 2.5.
Notice that the labels applied above now appear on the axes of the graph.

Figure 2.5 plots Food Expenditures on the y axis and Weekly Income on
the z. Gretl, by default, also plots the fitted regression line. The benefits of
assigning labels to the variables becomes more obvious. Both X- and Y-axes
are informatively labeled and the graph title is changed as well. More on
this later.

2.4 Estimate the Food Expenditure Relationship

Now you are ready to use gretl to estimate the parameters of the Food
Expenditure equation.

Yt = P1 + Paxt + € (2.2)

From the menu bar, select Model>0rdinary Least Squares from the pull-
down menu (see Figure 2.6) to open the dialog box shown in Figure 2.7.
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Figure 2.5: XY plot of the Food Expenditure data
“gretl: gnuplot graph E] o

Food Exp. versus $100 Weekly Income (with least squares fit)

600

Y= 834+ 10.2X ——

550
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Food Exp.
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Click on graph for pop-up menu

Figure 2.6: From the menu bar, select Model>0rdinary Least Squares to

open the least squares dialog box
“grell E]@
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Figure 2.7: The Specify Model dialog box opens when you select
Model>0rdinary least squares
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From this dialog you’ll need to tell gretl which variable to use as the depen-
dent variable and which is the independent variable. Notice that by default,
gretl assumes that you want to estimate an intercept (1) and includes a
constant as an independent variable by placing the variable const in the list
by default. To include x as an independent variable, highlight it with the
cursor and click the ‘Add->’ button.

The gretl console (see section 1.3.1) provides an easy way to run a
regression. The gretl console is opened by clicking the console button on

the toolbar, g The resulting console window is shown in Figure 2.8.

Figure 2.8: The Gretl console window. From this window you can type in
gretl commands directly and perform analyses very quickly—if you know the
proper gretl commands.

E gretl console g@
@ x

gretl console: type 'help' for a list of conmands
7|

At the question mark in the console simply type

ols y const x

to estimate your regression function. The syntax is very simple, ols tells
gretl that you want to estimate a linear function using ordinary least
squares. The first variable listed will be your dependent variable and any
that follow, the independent variables. These names must match the ones
used in your data set. Since ours in the food expenditure example are
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named, y and x, respectively, these are the names used here. Don’t forget to
estimate an intercept by adding a constant (const) to the list of regressors.
Also, don’t forget that gretl is case sensitive so that x and X are different
entities.

This yields window shown in Figure 2.9 below. The results are summa-
rized in Table 2.1.

Figure 2.9: The model window appears with the regression results. From
here you can conduct subsequent operations (graphs, tests, analysis, etc.)
on the estimated model.

“gretl: model 1 E]@

File Edit Tests Save Graphs Analysis  LaTeX

Model 1: OLS estimates using the 40 observations 1-40
Dependent wvariasble: ¥y

VARILELE COEFFICIENT STDERROR T 3TAT P-VALUE
const §3.4160 43.4102 1.92z2 0.06215 *
X 10.z2096 Z.093zZ6 4.877 0.0000z *#%#*

Mean of dependent wariahle = 283.574
SGtandard deviation of dep. war. = 112.675
Sum of sguared residuals = 304505
Standard error of residuals = §9.517
Unadjusted RE-sguared = 0.385002

Adjusted R-sguared = 0.368515

Degrees of freedom = 38

Log-likelihood = -235.509

Akaike information criterion (AIC) = 475.018
Schwarz Bayesian criterion (BIC) = 475.395
Hannan-guinn criterion (HQC) = 476.239

An equivalent way to present results, especially in very small models
like the simple linear regression, is to use equation form. In this format, the
gretl results are:

¥ = 83.4160 + 10.2096 x
(1.922) (4.877)
T =40 R?>=0.3688 F(1,38)=23.789 & =89.517

(t-statistics in parentheses)

Finally, notice in the main gretl window (Figure 2.1) that the first column
has a heading called ID #. An ID # is assigned to each variable in memory
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Table 2.1: OLS estimates using the 40 observations 1-40.

Dependent variable: y

Variable Coeflicient Std. Error t-statistic p-value
const 83.4160 43.4102 1.9216 0.0622
X 10.2096 2.09326 4.8774 0.0000

Mean of dependent variable 283.574

S.D. of dependent variable 112.675

Sum of squared residuals 304505.

Standard error of residuals (5) 89.5170

Unadjusted R? 0.385002

Adjusted R? 0.368818

Degrees of freedom 38

Akaike information criterion 475.018

Schwarz Bayesian criterion 478.395

and you can use these ID #s instead of variable names in your programs.
For instance, the following two lines yield identical results:

ols y const x
ols 1 0 2

One (1) is the ID number for y and two (2) is the ID number of z. The
constant has ID zero (0). If you tend to use long and descriptive variable
names (recommended, by the way), using the ID number can save you a lot
of typing (and some mistakes).

2.4.1 Elasticity

FElasticity is an important concept in economics. It measures how respon-
siveness one variable is to changes in another. Mathematically, the concept
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of elasticity is fairly simple:

ol percentage change in y  Ay/y

— = 2.3
percentage change in . Az/x (23)
In terms of the regression function, we are interested in the elasticity of
average food expenditures with respect to changes in income:

_AEQy)/E(y) _ g, "
Azx/x 2E(y)

E(y) and z are usually replaced by their sample means and [ by its esti-
mate. The mean of z and y can be obtained by using the cursor to highlight
both variables, use the View>Summary statistics from the menu bar as
shown in Figure 2.10, and the computation can be done by hand. However,
you can make this even easier by using the gretl language to do all of the
computations—no calculator needed! Simply open up a new script and type
in:

(2.4)

genr elast=$coeff (x)*mean(x)/mean(y)

Figure 2.10: Using the GUI to obtain summary statistics. Highlight the
desired variables and use View>Summary statistics from the pull-down
menu.

ngetl E]@

Fle Tools Data Wsw Add Sample Madsl Help

food gt Ieon view |

ID # | Variable amg Graph specified vars 3

0 const Multiple graphs v
1y
2 x Sumimary skatiskics [%
Correlation matrix
Cross Tabulation

Brincipal companents

Mshalanabis distances

Undated: Full rangs 1 - 40

mWeErOMBRee L Q

This yields the output shown in the next figure 2.11:



CHAPTER 2. SIMPLE LINEAR REGRESSION

Figure 2.11: Summary statistics

Ed gretl: summary statistics

M=%

BEeBmQ ™ x

Variabhle

¥
X

Variabhle

¥
X

Summary Statistics, using the observations 1 - 40

HEAN

283.57
15.805

11z .68
6.5478

HEDILN

264.45

Z20.030

C.V.

0.39734
0.349:29

HIN

109,71

3.6900

SEEW

0.49208
-0.62651

MALX

SB7.66

33.400

EXCSEURT

-0.14545
0.27973
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Following a least squares regression, Gretl stores the least squares esti-
mates of the constant and the slope in variables called $coeff (const) and
$coeff (x), respectively. In addition, it uses mean(x) and mean(y)to com-
pute the mean of the variables z and y. The result from this computation
appears below in Figure 2.12.

Figure 2.12: Results from the script to compute an elasticity based on a
linear regression.

% gretl: script output

deabDR e x

=10 %]

TICIIIISII ™ L LTI L I L ITTII

I

(ID 3

Close

o N L R e

? genr elast=icoeff (®) *mwean (x) fmean [ v)
Generated =scalar elast

= 0.70554

[

4




CHAPTER 2. SIMPLE LINEAR REGRESSION 30

2.4.2 Prediction

Similarly, gretl can be used to produce predictions. The predicted food
expenditure of an average household having weekly income of $2000 is:

g = 83.42 + 10.21z; = 83.42 + 10.21(20) = 287.61 (2.5)

Remember, income is measured in $100, so 20 in the above expression rep-
resents 20¥$100=%$2,000. The gretl script is:

genr yhat = $coeff(const) + $coeff (x)*20

which yields the desired result.

2.4.3 Estimating Variance

In section 2.7 of your textbook, you are given expressions for the vari-
ances of the least squares estimators of the intercept and slope as well as their
covariance. These estimators require that you estimate the overall variance
of the model’s errors, 2. Gretl does not explicitly report the estimator, 62,
but rather, its square root, 6. Gretl calls this “Standard error of residu-
als” which you can see from the output is 89.517. Thus, 89.517% = 8013.29.
Gretl also reports the sum of squared residuals, equal to 304505, from which
you can calculate the estimate. Dividing the sum of squared residuals by

the estimator’s degrees of freedom yields 62 = 304505/38 = 8013.29.

The estimated variances and covariance of the least squares estimator
can be obtained once the model is estimated by least squares by selecting the
Analysis>Coefficient covariance matrix command from the pull-down
menu of the model window as shown in Figure 2.13. The result is:

Covariance matrix of regression coefficients

const X
1884 .44 -85.9032 const
4.38175 x
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So, estimated variances of the least squares estimator of the intercept
and slope are 1884.44 and 4.38175, respectively. The least squares stan-
dard errors are simply the square roots of these numbers. The estimated
covariance between the slope and intercept -85.9032.

You can also obtain the variance-covariance matrix by specifying the
--vcv option when estimating a regression model. For the food expenditure
example use:

ols y const x --vcv

to estimate the model using least squares and to print the variance covariance
matrix to the results window.

2.5 Repeated Sampling

Perhaps the best way to illustrate the sampling properties of least squares
is through an experiment. In section 2.4.3 of your book you are presented
with results from 10 different regressions (POE Table 2.2). These were ob-
tained using the dataset table2-2.¢dt which is included in the gretl datasets
that accompany this manual. To reproduce the results in this table estimate
10 separate regressions

ols y1 const x
ols y2 const x

ols y10 const x

You can also generate your own random samples and conduct a Monte
Carlo experiment using gretl. In this exercise you will generate 100 samples
of data from the food expenditure data, estimate the slope and intercept pa-
rameters with each data set, and then study how the least squares estimator
performed over those 100 different samples. What will become clear is this,
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the outcome from any single sample is a poor indicator of the true value of
the parameters. Keep this humbling thought in mind whenever you estimate
a model with what is invariably only 1 sample or instance of the true (but
always unknown) data generation process.

We start with the food expenditure model:

Yt = P1+ Paze + e (2.6)

where y; is total food expenditure for the given time period and x; is income.
Suppose further that we know how much income each of 40 households earns
in a week. Additionally, we know that on average a household spends at least
$80 on food whether it has income or not and that an average household
will spend ten cents of each new dollar of income on additional food. In
terms of the regression this translates into parameter values of 5; = 80 and

B2 = 10.

Our knowledge of any particular household is considerably less. We don’t
know how much it actually spends on food in any given week and, other than
differences based on income, we don’t know how its food expenditures might
otherwise differ. Food expenditures are sure to vary for reasons other than
differences in family income. Some families are larger than others, tastes and
preferences differ, and some may travel more often or farther making food
consumption more costly. For whatever reasons, it is impossible for us to
know beforehand exactly how much any household will spend on food, even
if we know how much income it earns. All of this uncertainty is captured
by the error term in the model. For the sake of experimentation, suppose
we also know that e; ~ N (0, 882).

With this knowledge, we can study the properties of the least squares
estimator by generating samples of size 40 using the known data generation
mechanism. We generate 100 samples using the known parameter values,
estimate the model for each using least squares, and then use summary
statistics to determine whether least squares, on average anyway, is either
very accurate or precise. So in this instance, we know how much each
household earns, how much the average household spends on food that is
not related to income ($; = 80), and how much that expenditure rises on
average as income rises. What we do not know is how any particular
household’s expenditures responds to income or how much is autonomous.
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A single sample can be generated in the following way. The systematic
component of food expenditure for the " household is 80 + 10 % z;. This
differs from its actual food expenditure by a random amount that varies
according to a normal distribution having zero mean and standard deviation
equal to 88. So, we use computer generated random numbers to generate a
random error, ug, from that particular distribution. We repeat this for the
remaining 39 individuals. The generates one Monte Carlo sample and it is
then used to estimate the parameters of the model. The results are saved
and then another Monte Carlo sample is generated and used to estimate the
model and so on.

In this way, we can generate as many different samples of size 40 as we
desire. Furthermore, since we know what the underlying parameters are for
these samples, we can later see how close our estimators get to revealing
these true values.

Now, computer generated sequences of random numbers are not actually
random in the true sense of the word; they can be replicated exactly if you
know the mathematical formula used to generate them and the ‘key’ that
initiates the sequence. In most cases, these numbers behave as if they
randomly generated by a physical process.

To conduct an experiment using least squares in gretl use the script
found in Figure 2.14.

Let’s look at what each line accomplishes. The first line
open c:\userdata\gretl\data\poe\food.gdt

opens the food expenditure data set that resides in the poe folder of the
data directory. The next line, which is actually not necessary to do the
experiments, estimates the model using the original data using ols. It is
included here so that you can see how the results from the actual sample
compare to those generated from the simulated samples. All of the remaining
lines are used for the Monte Carlo.

In Monte Carlo experiments loops are used to estimate a model using
many different samples that the experimenter generates and to collect the
results. The loop construct in gretl begins with the command loop NMC
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—--progressive and ends with endloop. NMC in this case is the number
of Monte Carlo samples you want to use and the option --progressive
is a command that suppresses the individual output at each iteration from
being printed and allows you to store the results in a file. So that you can
reproduce the results below, I have also initiated the sequence of random
numbers using a key, called the seed, with the command set seed 3213798.
Basically, this ensures that the stream of pseudo random numbers will start
at the same place each time you run your program. Try changing the value
of the seed (3213798) or the number of Monte Carlo iterations (100) to see
how your results are affected.

Within this loop construct, you tell gretl how to generate each sample
and state how you want that sample to be used. The data generation is
accomplished here as

genr u = 88*normal()
genr y1 = 80 + 10*x + u

The genr command is used to generate new variables. In the first line u
is generated by multiplying a normal random variable by the desired stan-
dard deviation. Recall, that for any constant, ¢ and random variable, X,
Var(cX) = ¢2Var(X). The gretl command normal () produces a com-
puter generated standard normal random variable. The next line adds this
random element to the systematic portion of the model to generate a new
sample for food expenditures (using the known values of income in x).

Next, the model is estimated using least squares. Then, the coefficients
are stored internally in variables you create b1 and b2 (I called them bl and
b2, but you can name them as you like). These are then stored to a data
set coeff.gdt.

After executing the script, gretl prints out some summary statistics to
the screen. These appear below in Figure 2.15. Note that the average value
of the intercept is about 78.1497. This is getting close to the truth. The
average value of the slope is 10.0623, also reasonably close to the true value.
If you were to repeat the experiments with larger numbers of Monte Carlo
iterations, you will find that these averages get closer to the values of the
parameters used to generate the data. This is what it means to be unbiased.
Unbiasedness only has meaning within the context of repeated sampling. In
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your experiments, you generated many samples and averaged results over
those samples to get closer to the truth. In actual practice, you do not have
this luxury; you have one sample and the proximity of your estimates to the
true values of the parameters is always unknown.

After executing the script, open the coeff.gdt data file that gretl has
created and view the data. From the menu bar this is done using File>0Open
data>user file and selecting coeff.gdt from the list of available data sets.
From the example this yields the output in Figure 2.16. Notice that even
though the actual value of 81 = 80 there is considerable variation in the
estimates. In sample 18 it was estimated to be 138.0067 and in sample 1
it was -7.8842. Likewise, (2 also varies around its true value of 10. Notice
that for any given sample, an estimate is never equal to the true value of
the parameter!
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2.6 Script

The script for Chapter 2 is found below. These scripts can also be found
at my website http://www.learneconometrics.com/gretl.

open c:\userdata\gretl\data\poe\food.gdt

#Least squares
ols y const x --vcv

#Summary Statistics
summary y x

#Plot the Data
gnuplot y x

#List the Data
print y x --byobs

#Elasticity
genr elast=$coeff (x)*mean(x)/mean(y)

#Prediction
genr yhat = $coeff(const) + $coeff (x)*20

#Table 2.2

open c:\userdata\gretl\data\poe\table2-2.gdt
ols yl1 const x

ols y2 const
ols y3 const
ols y4 const
ols yb5 const
ols y6 const
ols y7 const
ols y8 const
ols y9 const
ols y10 const x

LT T T T A T


http://www.learneconometrics.com/gretl
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#Monte Carlo
open c:\userdata\gretl\data\poe\food.gdt

set seed 3213789

loop 100 -- progressive
genr u = 88*normal()
genr y1 = 80 + 10*x + u
ols y1 const x

genr bl = $coeff (const)
genr b2 = $coeff (x)
print bl b2

store coeff.gdt bl b2
endloop

37
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Figure 2.13: Obtain the matrix that contains the least squares estimates of
variance and covariance from the pull-down menu of your estimated model.

Bl Model 1 (==

File Edit Tests Save Graphs & Analysis  LaTeX

Display actual, fitted, residual
Model 1: Forecasts...
OL3 estimates using the Confidence intervals for coefficients
Dependent varisble: v | Confidence elipse...

Coefficient covariance matrix %
VARTAELE CO ANOVA T STAT  P-VALUE
Bookstrap...
const TETETO I 1.9z22 0.o06218 *
* 10.2096 Z.09326 4.877 0.0000z *#*+*

Mean of dependent wariahle = 283.574
SGtandard deviation of dep. war. = 112.675
Sum of sguared residuals = 304505
Standard error of residuals = §9.517
Unadjusted RE-sguared = 0.385002

Adjusted R-sguared = 0.368515

Degrees of freedom = 38

Log-likelihood = -235.509

Akaike information criterion (AIC) = 475.018
Schwarz Bayesian criterion (BIC) = 475.395
Hannan-guinn criterion (HQC) = 476.239

Figure 2.14: In the gretl script window you can type in the following com-
mands to execute a Monte Carlo study of least squares. Then to execute
the program, click on the small gear icon.

%" gretl: POEmc.inp k 1Ol x|

AR EREZEG 0@ x

open c:iuserdata’gretl’data’ PoEY food. gdt
ols ¥ const x

set seed 32137598

loop 100 -- progressive

genr u = S8*%normal ()

genr y1 = 80 4+ 10%x + u

ols vl const X

genr bl = Scoeff [const)

genr hZ = Scoeff (x)

print bl ki

store coeff.gdt bl bhi -
endloop ﬂ

[v]

Close |
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Figure 2.15: The summary results from 100 random samples of the Monte
Carlo experiment.

=k
EBRPRES x|

Fllonte Carlo |
? Zet seed 3213789

Pzeudo-random nuwber generator seeded with 3213789

? loop 100 -- progressive

> genr u = S8*%normal ()

> genr vl = 80 + 10*x + u
> ols vl const x

> genr bl = jcoeff(const)
> genr b2 = jcoeff(x)

> print bl ki

> store coeff.gdt bl b2

> endloop

OL3 estimates using the 40 obserwvations 1-40
SGtatistics for 100 repetitions
Dependent wvariasble: vl

mwean of std. dev. of mwean of std. dev. of
estimated estimated estimated estimated
Variabhle coefficients coefficients std. errors std. errors
const 75.1497 43.7946 43.1705 5.12991
* 10.0623 Z.19043 Z.08171 0.247367
Variabhle mean std. dev.
hi 75.1497 43.7946
hi 10.0623 Z.19043
store: using filename C:%Documents and SettingshLee’lApplication Datahgretl
Yooeff. gdt
Data written OK.

Close

L E]
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Figure 2.16: The results from the first 23 sets of estimates from the 100
random samples of the Monte Carlo experiment.

% gretl: display data 100 x|
R 02 x| §
-
Chs hi hi
1 -7.8542 13.25780
2 43 . 6942 11.&629087
3 70.3104 10.659701
4 89.9399 9.55748
5 97.5144 §.94946
& 46.5556 11.559072
7 43.3000 12.359705
g 104.1957 7.97913
9 110.9973 9.45536
i0 TT.4321 9.83773
11 111.55585 5.94545
1z 144.5442 7.49977
13 20.7119 10.24911
14 64.6415 11.20031
15 107.7807 7.93063
16 94,4716 §.53422
17 23.8560 12.503590
15 138.00687 G6.607158
19 11z2.4268 §.19739
Z0 52.3660 11.40634
Z1 104.0245 §.18292
22 91.2795 9.86716
23 33.1023 12.14082
- Lo amen P hdl
Close |




Chapter

Interval Estimation and Hypothesis
Testing

In this chapter, I will discuss how to generate confidence intervals and
test hypotheses using gretl. Gretl includes several handy utilities that
will help you obtain critical values and p-values from several important
probability distributions. As usual, you can use the dialog boxes or gretl’s
programming language to do this.

3.1 Confidence Intervals

It is important to know how precise your knowledge of the parameters
is. One way of doing this is to look at the least squares parameter estimate
along with a measure of its precision, i.e., its estimated standard error.

The confidence interval serves a similar purpose, though it is much more
straightforward to interpret because it gives you upper and lower bounds
between which the unknown parameter will lie with a given probability.*

IThis is probability in the frequency sense. Some authors fuss over the exact interpre-
tation of a confidence interval (unnecessarily I think). You are often given stern warnings
not to interpret a confidence interval as containing the unknown parameter with the given

41
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In gretl you can obtain confidence intervals either through a dialog or
by manually building them using saved regression results. In the ‘manual’
method I will use the genr command to generate upper and lower bounds
based on regression results that are saved in gretl’s memory, letting gretl
do the arithmetic. You can either look up the appropriate critical value from
a table or use the gretl’s critical function. I'll show you both.

Here is how it works. Consider equation (3.5) from your text
Plby — tese(b2) < B2 < by +tese(b2)] =1 —« (3.1)

Recall that by is the least squares estimator of (2, and that se(by) is its
estimated standard error. The constant t. is the a/2 critical value from
the t-distribution and « is the total desired probability associated with the
“rejection” area (the area outside of the confidence interval).

You’ll need to know t., which can be obtained from a statistical table, the
Tools>Statistical tables dialog contained in the program, or using the
gretl command critical. First, try using the dialog box shown in Figure
3.1. Pick the tab for the t distribution and tell gretl how much weight to
put into the right-tail of the probability distribution and how many degrees
of freedom your t-statistic has, in our case, 38. Once you do, click on OK.
You'll get the result shown in Figure 3.2. It shows that for the t(38) with
right-tail probability of 0.025 and two-tailed probability of 0.05, the critical
value is 2.02439.2 Then generate the lower and upper bounds (using the
gretl console) with the commands:

open c:\userdata\gretl\data\poe\food.gdt
ols y const x

genr 1lb = $coeff(x) - 2.024 * $stderr(x)
genr ub = $coeff(x) + 2.024 * $stderr(x)
print 1b ub

The first line opens the data set. The second line (ols) minimizes the

probability. However, the frequency definition of probability refers to the long run rela-
tive frequency with which some event occurs. If this is what probability is, then saying
that a parameter falls within an interval with given probability means that intervals so
constructed will contain the parameter that proportion of the time.

2You can also get the « level critical values from the console by issuing the com-
mand genr c= critical(t,38,a). Here « is the desired area in the right-tail of the
t-distribution.
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Figure 3.1: Obtaining critical values using the Tools>Statistical tables

dialog box.
“ gretl: critical values E]@

nu:urmal|t |chi—square F | binomial | poisson || D

df |33

right-tail probability | ,025]

X Close

(9=

Figure 3.2: The critical value obtained from Tools>Statistical tables
dialog box.

“ gretl: critical values E]@
[@ x

t(38)
right-tail proksbility = 0.025
comp lementary probability = 0.975
two-tailed prokhability = 0.05

Critical wvalue = Z.02439
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sum of squared errors in a linear model that has y as the dependent variable
with a constant and x as independent variables. The next two lines generate
the lower and upper bounds for the 95% confidence interval for the slope
parameter (B2. The last line prints the results of the computation.

The gretl language syntax needs a little explanation. When gretl makes
a computation, it will save certain results like coefficient estimates, their
standard errors, sum of squared errors and so on in memory. These results
can then be used to compute other statistics, provided you know the variable
name that gretl uses to store the computation. In the above example,
gretl uses the least squares estimates and their estimated standard errors
to compute confidence intervals. Following the ols command, least squares
estimates are stored in $coeff (variable name). So, since (39 is estimated
using the variable x, its coefficient estimate is saved in $coeff (x). The
corresponding standard error is saved in $stderr(x). There are many other
results saved and stored, each prefixed with the dollar sign $. Consult the
gretl documentation for more examples and specific detail on what results
can be saved and how to access them.

Equivalently, you could use gretl’s built in critical to obtain the de-
sired critical value. The general syntax for the function depends on the
desired probability distribution. This follows since different distributions
contain different numbers of parameters (e.g., the t-distribution has a single
degrees of freedom parameter while the standard normal has none!). This
example uses the t-distribution and the script becomes:

open c:\userdata\gretl\data\poe\food.gdt

ols y const x

genr 1lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)
genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)
print 1b ub

The syntax for the t-distribution is critical (t,degrees of freedom,a/2).
The degrees of freedom from the preceding regression are saved as $df and
for a 1 — a = 95% confidence interval, a/2 = 0.025.

The example found in section 3.1.3 of POE computes a 95% confidence
interval for the income parameter in the food expenditure example. The
gretl commands above were used to produce the output found in Figure
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3.3.

Figure 3.3: Obtaining 95% confidence interval for the food expenditure ex-
ample.
& gretl: script output 1Ol x|

BRBR B x

Model 1: OLS estimates using the 40 observations 1-40
Dependent wvariasble: ¥y

VARILELE COEFFICIENT STDERROR T 3TAT P-VALUE
const §3.4160 43.4102 1.92z2 0.06215 *
X 10.z2096 Z.093zZ6 4.877 0.0000z *#%#*

Mean of dependent wariahle = 283.574
SGtandard deviation of dep. war. = 112.675
Sum of sguared residuals = 304505
Standard error of residuals = §9.517
Unadjusted RE-sguared = 0.385002

Adjusted R-sguared = 0.368515

Degrees of freedom = 38

Log-likelihood = -235.509

Akaike information criterion (AIC) = 475.018
Schwarz Bayesian criterion (BIC) = 475.395
Hannan-guinn criterion (HQC) = 476.239

? genr lb = fcoeffi(x) - Z.024 * $stderr(x)
Generated scalar lb (ID 3) = 5,97288

? genr ub = fcoeff(x) + Z.024 * $stderr(x)
Generated scalar ub (ID 4) = 14,4464

? print lb ub

1k
ub

5.97288
14.4464

[«

Close

To use the dialogs to get confidence intervals is easy as well. First esti-
mate the model using least squares in the usual way. Choose Model>0rdinary
least squares from the main pull-down menu, fill in the dependent and in-
dependent variables in the ols dialog box and click OK. The results appear
in the model window. Now choose Analysis>Confidence intervals for
coefficients from the model window’s pull-down menu (seen in Figure
4.1). This generates the result shown in Figure 3.4.
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Figure 3.4: Obtaining 95% confidence interval for the food expenditure ex-
ample from the dialog.

“ gretl: coefficient confidence intervals E]@
[@ m x
t(35, .02Z5) = 2.024
VARILELE COEFFICIENT 95% CONFIDENCE INTERWVAL
const 83.4160 (-4.46328, 171.295)
* 10.2096 [5.97205, 14.4472)

3.2 Monte Carlo Experiment

Once again, the consequences of repeated sampling can be explored using
a simple Monte Carlo study. In this case, we will add the two statements
that compute the lower and upper bounds to our previous program listed
in Figure 2.14. We’ve also added a parameter, sig2, which is the estimated
variance of the model’s errors.

The new script looks like this:

open c:\userdata\gretl\data\poe\food.gdt
set seed 3213798

loop 100 -- progressive

genr u = 88*normal ()

genr y1 = 80 + 10*x + u

ols y1 const x

genr bl = $coeff (const)
genr b2 = $coeff (x)
genr sl = $stderr(const)
genr s2 = $stderr(x)

# 2.024 is the .025 critical value from the t(38) distribution
genr clL = bl - 2.024x*s1

genr clR = bl + 2.024x*s1

genr c2L = b2 - 2.024x%s2

genr c2R = b2 + 2.024x*s2

genr sigma = $sigma



CHAPTER 3. CONFIDENCE INTERVALS & HYPOTHESIS TESTS 47

genr sig2 = sigma*sigma

print bl

print b2

store cicoeff.gdt bl b2 sl s2 sig2 clL cl1R c2L c2R
endloop

The results are stored in the gretl data set cicoeff.gdt. Opening this data
set (open C:\userdata\gretl\user\cicoeff.gdt) and examining the data
will reveal interval estimates that vary much like those in Tables 3.1 and 3.2
of your textbook. Also, notice that the estimated standard error of the
residuals, &, is stored in $sigma and used to estimate the overall model
variance.

3.3 Hypothesis Tests

Hypothesis testing allows us to confront any prior notions we may have
about the model with what we actually observe. Thus, if before drawing a
sample, I believe that autonomous weekly food expenditure is no less than
$40, then once the sample is drawn I can determine via a hypothesis test
whether experience is actually consistent with this belief.

In section 3.4 of your textbook the authors test several hypotheses about
Bo2. In 3.4.1a the null hypothesis is that 52 = 0 against the alternative that
it is positive (i.e., B2 > 0). The test statistic is:

t = (bQ - 0)/8€(b2) ~ t38 (3.2)

provided that S = 0 (the null hypothesis is true). Select v = 0.05 which
makes the critical value for the one sided alternative (#2 > 0) equal to 1.686.
The decision rule is to reject Ho in favor of the alternative if the computed
value of your t statistic falls within the rejection region of your test; that is
if it is larger than 1.686.

The information you need to compute ¢ is contained in the least squares
estimation results produced by gretl:

Model 1: OLS estimates using the 40 observations 1-40
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Dependent variable: y

Variable Coefficient Std. Error t-statistic p-value
const 83.4160 43.4102 1.9216 0.0622
X 10.2096 2.09326 4.8774 0.0000

Mean of dependent variable 283.574

S.D. of dependent variable 112.675

Sum of squared residuals 304505.

Standard error of residuals () 89.5170

Unadjusted R? 0.385002

Adjusted R? 0.368818

Degrees of freedom 38

Akaike information criterion 475.018

Schwarz Bayesian criterion 478.395

The computations
t = (ba — 0)/se(b2) = (10.21 — 0)/2.09 = 4.88 (3.3)

Since this value is within the rejection region, then there is enough evidence
at the 5% level of significance to convince us that the null hypothesis is
incorrect; the null hypothesis rejected at this level of significance. We can

Figure 3.5: The dialog box for obtaining p-values using the built in statistical
tables in gretl.

Ed gretl: p-value finder g@ﬁ

normal | b |chi-square | F | gamma || binomial | poisson

df |38

value | 10,21

X Close | | cggli |
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use gretl to get the p-value for this test using the Tools pull-down menu. In
this dialog, you have to fill in the degrees of freedom for your t-distribution
(38), the value of by (10.21), its value under the null hypothesis-something
gretl refers to as ‘mean’ (0), and the estimated standard error from your
printout (2.09). This will yield the information:

t(38): area to the right of 10.21 = 9.55024e-013
(two-tailed value = 1.91005e-012; complement = 1)

This indicates that the area in one tail is almost zero. The p-value is well
below the usual level of significance, o = .05, and the hypothesis is rejected.

Gretl also includes a programming command that will compute p-values
from several distributions. The pvalue function works similarly to the
critical function discussed in the preceding section. The syntax is:

genr p = pvalue(distribution,parameters,xval)

The pvalue function computes the area to the right of xval in the specified
distribution. Choices include z for Gaussian, t for Student’s t, X for
chi-square, F' for F, G for gamma, B for binomial or P for Poisson. The
argument parameters refers to the distribution’s known parameters, like
its degrees of freedom. So, for this example try

open c:\userdata\gretl\data\poe\food.gdt
ols y const x

genr t2 = ($coeff(x)-0)/$stderr(x)

genr p2 = pvalue(t,$df,t2)

In the next example, the authors of POFE test the hypothesis that 8o = 5.5
against the alternative that G2 > 5.5. The computations

t = (by — 5.5)/se(by) = (10.21 — 5.5)/2.09 = 2.25 (3.4)

The significance level in this case is chosen to be 0.01 and the corresponding
critical value can be found using a tool found in Gretl. The Tools>Statistical
tables pull-down menu bring up the dialog found in Figure 3.1.
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Figure 3.6: The results from the dialog box for obtaining critical values
using the built in statistical tables in gretl.

“gretl: critical values E]@
@ x

ti38)

right-tail probability = 0.01
complementary probability = 0.99
two-tailed probability = 0.02

Critical walue = 2.42857

This result is found in Figure 3.6. The .01 one-sided critical value is
2.429. Since 2.25 is less than this, we cannot reject the null hypothesis at
the .01 level of significance.

In section 3.4.2 of POEFE, the authors conduct a one-sided test where
the rejection region falls within the left tail of the t-distribution. The null
hypothesis is f2 = 15 and the alternative is B2 < 15. The test statistic and

distribution is
t = (by — 15)/se(bz) ~ t33 (3.5)

provided that B2 = 15. The computation is
t = (by — 15)/se(b2) = (10.21 — 15)/2.09 = —2.29 (3.6)

Based on the desired level of significance, a = .05, we would reject the null
in favor of the one-sided alternative if ¢ < —1.686. It is and therefore we
conclude that the coefficient is less than 15 at this level of significance.

In section 3.4.3 examples of two-tailed tests are found. In the first ex-
ample the economic hypothesis that households will spend $7.50 of each
additional $100 of income on food. So, Hy : B2 = 7.50 and the alternative
is Hy : B2 # 7.50. The statistic is t = (by — 7.5)/se(bg) ~ t3g if Hy is true
which is computed t = (ba — 7.5)/se(b2) = (10.21 — 7.5)/2.09 = 1.29. The
two-sided, o = .05 critical value is 2.024. This means that you reject Hy if
either ¢ < —2.024 or if ¢ > 2.024. The computed statistic is neither, and
hence we do not reject the hypothesis that 35 is $7.50. There simply isn’t
enough information in the sample to convince us otherwise.
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You can draw the same conclusions from using a confidence interval that
you can from this two-sided t-test. The 100(1 — a))% confidence interval for
B2 is

by — tcse(bg) < By <by+ tcse(bg) (37)

In terms of the example
10.21 — 2.024(2.09) < (B2 < 10.21 + 2.024(2.09) (3.8)

which as we saw earlier in the manual was 5.97 < 35 < 14.45. Since 7.5 falls
within this interval, you could not reject the hypothesis that 3, is different
from 7.5 at the .05% level of significance.

In the next example a test of the overall significance of G2 is conducted.
As a matter of routine, you always want to test to see if your slope parameter
is different from zero. If not, then the variable associated with it may not
belong in your model. So, Hy : #2 = 0 and the alternative is Hy : O3 # 0.
The statistic is t = (ba — 0)/se(ba) ~ tss, if Hy is true, and this is computed
t = (by —0)/se(ba) = (10.21 — 0)/2.09 = 4.88. Once again, the two-sided,
a = .05 critical value is 2.024 and 4.88 falls squarely within the 5% rejection
region of this test. These numbers should look familiar since this is the test
that is conducted by default whenever you run a regression in Gretl.

As we saw earlier, gretl also makes obtaining one- or two-sided p-values
for the test statistics you compute very easy. Simply use p-value finder dialog
box available from the Tools pull-down menu (see Figure 3.6) to obtain one
or two sided p-values.

3.4 Script for t-values and p-values

One thing we’ve shown in this chapter is that many of the results ob-
tained using the pull-down menus (often referred to as the GUI) in gretl
can be obtained using gretl’s language from the console or in a script. In
fact, the gretl’s GUI is merely a front-end to its programming language.?
In this chapter we used the pvalue and critical functions to get p-values
or critical values of statistics. The following script accumulates what we’ve
covered and completes the examples in the text.

3This is true in Stata as well.
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open c:\userdata\gretl\data\poe\food.gdt
ols y const x
genr tratiol = ($coeff(x) - 0)/ $stderr(x)

#0ne sided test (Ha: b2 > zero)
genr c2 = critical(t,$df,.05)
genr p2 = pvalue(t,$df,tratiol)

#0ne sided test (Ha: b2>5.5)

genr tratio2 = ($coeff(x) - 5.5)/ $stderr(x)
genr c2 = critical(t,$df,.05)
pvalue(t,$df,tratio2)

genr p2

#0ne sided test (Ha: Db2<15)

genr tratio3 = ($coeff(x) - 15)/ $stderr(x)
genr c3 = -lxcritical(t,$df,.05)

genr p3 = pvalue(t,$df,abs(tratio3l))

#Two sided test (Ha: b2 not equal 7.5)

genr tratiod = ($coeff(x) - 7.5)/ $stderr(x)
genr c4 = critical(t,$df,.025)

genr p4 = 2*pvalue(t,$df,tratiod)

#Confidence interval
genr 1lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)
genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)

#Two sided test (Ha: b2 not equal zero)
genr cl = critical(t,$df,.025)
genr pl = 2xpvalue(t,$df,tratiob)

The pvalue function in gretl measures the area of the probability distribu-
tion that lies to the right of the computed statistic. If the computed t-ratio
is positive and your alternative is two-sided, multiply the result by 2 to
measure the area to the left of its negative.

If your t-ratio is negative, gretl won’t compute the area (and you wouldn’t
want it to, anyway). This is what happened for tratio3 in the script and
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I used the absolute value function, abs( ), to get its positive value. The
area to the right of the positive value is equivalent to the area left of the
negative value. Hence, the computation is correct.

Basically, proper use of the pvalue in tests of a single hypothesis requires
a little thought. Too much thought, in my opinion. I would avoid it unless
you are comfortable with its use. In other hypothesis testing contexts (e.g.,
x? and F-tests) p-values are much easier to use correctly. I use them freely
in those cases. With t-tests or z-tests (normal distribution), it is just easier
conduct a test by comparing the computed value of your statistic to the
correct critical value.
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3.5 Script

open c:\userdata\gretl\data\poe\food.gdt
ols y const x
genr tratiol = ($coeff(x) - 0)/ $stderr(x)

#0ne sided test (Ha: b2 > zero)
genr c2 = critical(t,$df,.05)
genr p2 = pvalue(t,$df,tratiol)

#0ne sided test (Ha: b2>5.5)

genr tratio2 = ($coeff(x) - 5.5)/ $stderr(x)
genr c2 = critical(t,$df,.01)

genr p2 = pvalue(t,$df,tratio?2)

#0ne sided test (Ha: Db2<15)

genr tratio3 = ($coeff(x) - 15)/ $stderr(x)
genr c3 = -lxcritical(t,$df,.05)

genr p3 = pvalue(t,$df,abs(tratiol))

#Two sided test (Ha: b2 not equal 7.5)

genr tratiod = ($coeff(x) - 7.5)/ $stderr(x)
genr c4 = critical(t,$df,.025)

genr p4 = 2*pvalue(t,$df,tratiod)

#Confidence interval
genr 1lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)
genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)

#Two sided test (Ha: b2 not equal zero)
genr cl = critical(t,$df,.025)
genr pl = 2xpvalue(t,$df,tratiol)



Chapter

Prediction, Goodness-of-Fit, and
Modeling Issues

Several extensions of the simple linear regression model are now con-
sidered. First, conditional predictions are generated using results saved by
gretl. Then, a commonly used measure of the quality of the linear fit pro-
vided by the regression is discussed. We then take a brief detour to discuss
how gretl can be used to provide professional looking output that can be
used in your research.

The choice of functional form for a linear regression is important and
the RESET test of the adequacy of your choice is examined. Finally, the
residuals are tested for normality. Normality of the model’s errors is a useful
property in that, when it exists, it improves the the performance of least
squares and the related tests and confidence intervals we’ve considered when
sample sizes are small (finite).

4.1 Prediction in the Food Expenditure Model

Generating predicted values of food expenditure for a person with a
given income is very simple in gretl. After estimating the model with least

95
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squares, you can use the genr to get predicted values. In the example, a
household having x, = $2000 of weekly income is predicted to spend approx-
imately $287.61 on food. Recalling that income is measured in hundreds of
dollars in the data, the gretl commands to compute this from the console
are:

ols y const x
genr yhatO = $coeff (const) + $coeff (x)*20

This yields gg = 287.609.

Obtaining the 95% confidence interval is slightly harder in that there are
no internal commands in gretl that will do this. The information needed is
readily available, however. The formula is:

~2

N A2 i

var(f) =0+ T

In section 2.4 we estimated 62 = 8013.29 and var(bg) = 4.3818. The mean

value of income is found by highlighting the variable x in the main gretl

window and the selecting View>Summary Statistics from the pull-down

menu. This yields Z = 19.6047.1 The t3g 5% critical value is 2.0244 and the
computation?

+ (xo — Z)*var(by) (4.1)

8013.2941
40

Then, the confidence interval is:

var(f) = 8013.2941 + + (20— 19.6047)? % 4.3818 = 8214.31 (4.2)

Jo £ tese(f) = 287.6069 + 2.0244+/8214.31 = [104.132,471.086]  (4.3)

The complete script to produce the computed results in gretl is:

ols y const x

genr yhatO = $coeff (const) + $coeff (x)*20

genr £=8013.2941+(8013.2941/40)+4.3818*(20-19.6047)**2
genr ub=yhat0+2.0244*sqrt (f)

genr lb=yhat0-2.0244*sqrt(f)

Your result may vary a little depending on how many digits are carried out to the
right of the decimal.

You can compute this easily using the gretl console by typing in: genr
£=8013.2941+(8013.2941/40)+4.3818*(20-19.6047) **2
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At this point, you may be wondering if there is some way to use the
internal functions of gretl to produce the same result? As we’ve seen, gretl
saves many of the results we need internally and these can in turn be called
into service in subsequent computations.

For instance, the sum of squared errors from the least squares regression
is saved as $ess. The degrees of freedom and number of observations are
saved as $df and $nobs, respectively. Also, you can use an internal gretl
function to compute Z, mean(x) and the critical function discussed in the
preceding chapter to get the desired critical value. Hence, the prediction
interval can be automated and made more precise by using the following
script.

ols y const x

genr yhatO=$coeff (const)+20*$coeff (x)

genr sig2 = $ess/$df

genr f = sig2 + sig2/$nobs + ((20-mean(x)) 2)*($stderr(x)"2)
genr 1lb = yhatO-critical(t,$df,0.025)*sqrt(f)

genr ub = yhatO+critical(t,$df,0.025)*sqrt(£)

4.2 Coeflicient of Determination

One use of regression analysis is to “explain” variation in dependent
variable as a function of the independent variable. A summary statistic
that is used for this purpose is the coefficient of determination, also known
as R2.

There are a number of different ways of obtaining R? in gretl. The
simplest way to get R? is to read it directly off of gretl’s regression out-
put. This is shown in Figure 4.3. Another way, and probably most difficult,
is to compute it manually using the analysis of variance (ANOVA) ta-
ble. The ANOVA table can be produced after a regression by choosing
Analysis>ANOVA from the model window’s pull-down menu as shown in
Figure 4.1. The result appears in Figure 4.2. In Figure 4.2 the SSR, SSE,
and SST are shown. Gretl also does the R? computation for you as shown
at the bottom of the output. If you want to verify gretl’s computation,
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Figure 4.1: After estimating the regression, select Analysis>ANOVA from

the model window’s pull-down menu.
=1l x]

[
a

|Eile Edit Tests Save Graphs LaTex |

Display actual, fitted, residual
Model 4: OLS estimates |Eorecasts.. 1-40
Dependent varisble: v Confidence intervals For coefficients
Confidence ellipse...

VARIAELE CO| Coefficient covariance matrix T STAT P-VALLUE
CoOnst Bootstrap. .. 1.92z2 0.06218 *
* T 2098 . 4.877 0.0000z *#*+*

Mean of dependent wariahle = 283.574

SGtandard deviation of dep. war. = 112.675

Sum of sguared residuals = 304505 AN.OVA Table
Standard error of residuals = §9.517

Unadjusted RE-sguared = 0.385002

Adjusted R-sguared = 0.368515

Degrees of freedom = 38

Log-likelihood = -235.509

Akaike information criterion (AIC) = 475.018
Schwarz Bayesian criterion (BIC) = 475.395
Hannan-guinn criterion (HQC) = 476.239

Close

Figure 4.2: The ANOVA table
-1ofx]

Analysis of Variance:

Sum of scquares df Mean sguare
Regreszion SSR  1opez7 1 190627
Residual SSE .304505 35 8013.29
Total SST 495138 39 13029.5

R“Z = 190627 / 495132 = D.SSSDDZT
Fi1, 38) = 190627 / 8013.29 = 23.7388

Close




CHAPTER 4. PREDICTION, R*, AND MODELING ISSUES 59

then
SST = SSR + SSE = 190627 - 304505 — 495132 (4.4)
and SSR SSE 190627
_— — = = . 4-
SST SST 195132 O (4.5)

Figure 4.3: In addition to some other summary statistics, Gretl computes
the unadjusted R? from the linear regression.
/& gretl: model 1 1Ol x|

File Edit Tests Save Graphs Analysis LaTeX

Model 1: OLS estimates using the 40 observations 1-40
Dependent wvariasble: ¥y

VARILELE COEFFICIENT STDERROR T 3TAT P-VALUE
const §3.4160 43.4102 1.92z2 0.06215 *
x 10.2096 z2.093z6 4.877 0.0000z2 *#*%

Mean of dependent wariahle = 283.574
SGtandard deviation of dep. war. = 112.675
Sum of sguared residuals = 304505

Standard error of residuals = §9.517
Unadjusted R-sguared = 0.385002 *—
Adjusted R-sguared = 0.368515

Degrees of freedom = 38

Log-likelihood = -235.509

Akaike information criterion (AIC) = 475.018
Schwarz Bayesian criterion (BIC) = 475.395
Hannan-guinn criterion (HQC) = 476.239

Close |

Finally, you can think of R? is as the squared correlation between your
observations on your dependent variable, y, and the predicted values of y
based on your estimated model, §. A gretl script to compute this version
of the statistic is found below in section 4.6.5.

To use the GUI you can follow the steps listed here. Estimate the model
using least squares and add the predicted values from the estimated model,
9, to your data set. Then use the gretl correlation matrix to obtain the
correlation between y and . Adding the fitted values to the data set from
the pull-down menu in the model window is illustrated in Figure 4.4 below.
Highlight the variables y, x, and yhat2 by holding the control key down
and clicking on each variable in the main gretl window as seen in Figure
4.5 below. Then, View>Correlation Matrix will produce all the pairwise
correlations between each variable you’ve chosen. These are arranged in a
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Figure 4.4: Using the pull-down menu in the Model window to add fitted
values to your data set.
=lalx|

File Edit Tests Graphs  Analysis  LaTeX |

Model 2: oOLS | Residuals bservations 1-40
Dependent wa] Squared residuals
Error sum of squares

VARIAR] Standard error of residuals STDERROR T STAT P-VALUE
R-squared
const T*R-squared 43.4102 1.9z22 0.o06218 *
x Akaike Information Criterion 2.09326 4.877 0.00o0z ===

Bayesian Information Criterion

Hean of de Hannan-Quinn Information Criterion B
Standard d 12.675

Sum of sguq Define new variable. ..

Standard error of residuals = §9.517
Unadjusted RE-sguared = 0.385002
Adjusted R-sguared = 0.368515
Degrees of freedom = 38

Log-likelihood = -235.509

Akaike information criterion (AIC) = 475.018
Schwarz Bayesian criterion (BIC) = 475.395
Hannan-guinn criterion (HQC) = 476.239

Close |

Figure 4.5: Hold the control key and click on y, x, and § = yhat2 from the
food expenditure regression to select them.
=lolx]
| File Tools Data Wew Add Sample Yariable  Model Help |

food.gdt *
D |Variable name |Descriptive label |

0 const auko-generated conskant

Undated: Full range 1 - 40

e 2 ] ] e Y R RS
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Figure 4.6: The correlation matrix for y, x, and § = yhat2 is produced by
selecting View>Correlation matrix from the pull-down menu.

/& gretl: correlation matrix i ] B
R w x
-
Correlation Coefficients, using the obserwvations 1 - 40
5% critical walue (two-tailed) = 0.3120 for n = 40
v b4 vhat2
1.0000 0.6z05 0.6205 v
1.0000 1.0000 @ x
1.0000 vhat2
=
Close |

matrix as shown in Figure 4.6 Notice that the correlation between y and z
is the same as that between y and ¢ (i.e., 0.6205). As shown in your text,
this is no coincidence in the simple linear regression model. Also, squaring
this number equals R? from your regression, 0.6205? = .385.

In Figure 4.4 of POE the authors plot y against . A positive linear re-
lationship between the two is expected since the correlation their correlation
is 0.62. To produce this plot, estimate the regression to open the model win-
dow. Add the predicted values of from the regression to the dataset using
Save>Fitted values from the model window’s pull-down menu. Name the
fitted value, yhatl and click OK. Now, return to the main window, use the
mouse to highlight the two variables (y and yhat1), then select View>Graph
specified vars>X-Y scatter from the pull-down menu. This opens the
define graph dialog box. Choose yhatl as the Y-axis variable and y as
the X-axis variable and click OK. A graph appears that looks similar to
the one in POE. This one actually has a fitted least squares line through
the data scatter that, as expected, has a positive slope. In fact, the slope is
estimated to be .385, which is the regression’s R?!

A simpler approach is to open a console window and use the following
commands:

ols y const x
genr yhatl = $yhat
gnuplot yhatl y

3Remember, press and hold Ctrl, then click on each variable
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The first line estimates the regression. The predicted values are saved by
gretl in $yhat. Use the genr command to create a new variable, yhat1l,
that uses these. Then, call gnuplot with the predicted values, yhat1, as the
first variable and the actual values of food expenditure, y, as the second.
The graph is shown below in Figure 4.7. Finally, if you execute these com-

Figure 4.7: A plot of predicted vs. actual food expenditures produced using
gnuplot .

". gretl: gnuplot graph - |E||£|

vhatl versus Food Exp. (with least squares fit)

——
¥ =174, 4-]0.335:( | —

450
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100 1 1 1 1
100 200 300 400 500 600

Food Exp.

mands using a script, the graph is written to a file on your computer rather
than opened in a window. For this reason, I recommend executing these
commands from the console rather than from the script file that appears at
the end of this chapter.

4.3 Reporting Results

In case you think gretl is just a toy, the program includes a very capa-
ble utility that enables it to produce professional looking output. LaTeX,
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usually pronounced “Lay-tek”, is a typesetting program used by mathemati-
cians and scientists to produce professional looking technical documents. It
is widely used by econometricians to prepare manuscripts for wider distri-
bution. In fact, this book is produced using LaTeX.

Although LaTeX is free and produces very professional looking docu-
ments, it is not widely used by undergraduate and masters students because
1) most degree programs don’t require you to write a lot of technical papers
and 2) it’s a computer language and therefore it takes some time to learn its
intricacies and to appreciate its nuances. Heck, I've been using it for years
and still scratch my head when I try to put tables and Figures in the places
I’d like them to be!

In any event, gretl includes a facility for producing output that can
be pasted directly into LaTeX documents. For users of LaTeX, this makes
generating regression output in proper format a breeze. If you don’t already
use LaTeX, then this will not concern you. On the other hand, if you already
use it, gretl can be very handy in this respect.

In Figure 4.3 you will notice that on the far right hand side of the menu

bar File Edit Tests Sawe Graphs Analysis  LaTex is a pull-down menu for

LaTeX. From here, you click LaTeX on the menu bar and a number of op-
tions are revealed as shown in Figure 4.8. You can view, copy, or save the

Figure 4.8: Several options for defining the output of LaTeX are available.
[Fommoels
| File Edit Tests Sawe Graphs Analysis m

Wiew »
Model 4: OLS estimates using i SOPY Flh= 1-40
Dependent wvarisble: ¥ Sawve 3

* show standard errors
VARIALELE COEFFICIH Tabular options. .. Shiowy t-ratios

regression output in either tabular form or in equation form. You can tell
gret]l whether you want standard errors or t-ratios in parentheses below
parameter estimates, and you can define the number of decimal places to
be used of output. Nice indeed. Examples of tabular and equation forms of
output are found below in Tables 4.1 and 4.2, respectively.
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Table 4.1: This is an example of LaTeX output in tabular form.

Model 1: OLS estimates using the 40 observations 1-40
Dependent variable: y

Variable Coeflicient Std. Error t-statistic p-value
const 83.4160 43.4102 1.9216 0.0622
X 10.2096 2.09326 4.8774 0.0000

Mean of dependent variable 283.574

S.D. of dependent variable 112.675

Sum of squared residuals 304505.

Standard error of residuals (&) 89.5170

Unadjusted R? 0.385002

Adjusted R? 0.368818

Degrees of freedom 38

AXkaike information criterion 475.018

Schwarz Bayesian criterion 478.395

Table 4.2: Example of LaTeX output in equation form

y = 83.4160 + 10.2096 x
(1.922) (4.877)

T =40 R?>=0.3688 F(1,38)=23.789 & =89.517

(t-statistics in parentheses)



CHAPTER 4. PREDICTION, R*, AND MODELING ISSUES 65

4.4 Functional Forms

Linear regression is considerably more flexible than its name implies.
There is no reason to believe that the relationship between any two variables
of interest is necessarily linear. In fact there are many relationships in
economics that we know are not linear. The relationship between production
inputs and output is governed in the short-run by the law of diminishing
returns, suggesting that a convex curve is a more appropriate function to
use. Fortunately, a simple transformation of the variables (x, y, or both)
can yield a model that is linear in the parameters (but not necessarily in
the variables).

Simple transformation of variables can yield regression functions that
are quite flexible. The important point to remember is, the functional form
that you choose should be consistent with how the data are actually being
generated. If you choose an inappropriate form, then your estimated model
may at best not be very useful and at worst be downright misleading.

In gretl you are given some very useful commands for transforming vari-
ables. From the main gretl window the Add pull-down menu gives you access
to a number of transformations; selecting one of these here will automatically
add the transformed variable to your data set as well as its description.

Figure 4.9 shows the available selections from this pull-down menu. In
the upper part of the panel two options appear in black, the others are
greyed out because they are only available is you have defined the dataset
structure to consist of time series observations. The available options can
be used to add the natural logarithm or the squared values of any highlighted
variable to your data set. If neither of these options suits you, then the next
to last option Define new variable can be selected. This dialog uses the
genr command and the large number of built in functions to transform
variables in different ways. Just a few of the possibilities include square
roots (sqrt), sine (sin), cosine (cos), absolute value (abs), exponential (exp),
minimum (min), maximum (max), and so on. Later in the book, we’'ll
discuss changing the dataset’s structure to enable some of the other variable
transformation options.
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Figure 4.9: The pull-down menu for adding new variables to gretl
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4.5 Testing for Normality

Your book, Principles of Econometrics, discusses the Jarque-Bera test
for normality which is computed using the skewness and kurtosis of the least
squares residuals. To compute the Jarque-Bera statistic, you'll first need to
estimate your model using least squares and then save the residuals to the

data set.

From the gretl console

ols y const x
genr uhatl = $uhat
summary uhatl

The first line is the regression. The next saves the least squares redsidu-
als, identified as $uhat, into a variable I have called uhat1.* You could

4You can’t use uhat instead of uhat1 because that name is reserved by gretl.
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also use the point-and-click method to add the residuals to the data set.
This is accomplished from the regression’s output window. Simply choose
Save>Residuals from the model pull-down menu to add the estimated resid-
uals to the dataset. The last line of the script produces the summary statis-
tics for the residuals and yields the output in Figure 4.10. One thing to

Figure 4.10: The summary statistics for the least squares residuals.

? summary uhatl

Summary Statistics, using the observations 1 - 40
for the variable ’uhatl’ (40 valid observations)

Mean 0.00000
Median -6.3245
Minimum -223.03
Maximum 212.04
Standard deviation 88.362

C.V. 2.4147E+015
Skewness -0.097319
Ex. kurtosis -0.010966

note, gretl reports excess kurtosis rather than kurtosis. The excess kurtosis
is measured relative to that of the normal distribution which has kurtosis of
three. Hence, your computation is

1) 2
JB = % (Skewn6582 + (Excess Iiurto&s) ) (4.6)
Which is )
40 —0.011
JB =+ (—0.0972 + > = .063 (4.7)

Gretl also includes a built in test for normality proposed by Doornik and
Hansen (1994). Computationally, it is much more complex than the Jarque-
Bera test. The Doornik-Hansen test also has a y? distribution if the null
hypothesis of normality is true. It can be produced from the gretl console
after running a regression using the command testuhat.?

5The R software also has a built-in function for performing the Jarque-Bera test. To
use it, you have to download and install the tseries package from CRAN. Once this is
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4.6 Examples

4.6.1 Wheat Yield Example

The results from the example in section 4.3 of your textbook is easily
produced in gretl. Start by loading the data and estimating the effect of
time, time on yield green using least squares. The following script will load
the data file, estimate the model using least square, and generate a graph
of the actual and fitted values of yield (green) from the model.

open c:\userdata\gretl\data\poe\wa-wheat.gdt
ols green const time
gnuplot green time

The resulting plot appears below in Figure 4.11. The simple gnuplot com-
mand works well enough. However, you can take advantage of having de-
clared the dataset structure to be time series to improve the look. In this
example we’ll reproduce Figure 4.8 of POE using two options for gnuplot.
Figure 4.8 of POF plots the residuals, the actual yield, and predicted yield
from the regression against time. Estimate the model using least squares and
save the predicted values ($yhat) and residuals ($uhat) to new variables us-
ing the genr command. We’ll call these yhatl and uhatl, respectively. Then
use

gnuplot green yhatl uhatl --with-lines --time-series

There are two options listed after the plot. The first (--with-lines) tells
gnuplot to connect the points using lines. The second option (--time-series)
tells gnuplot that the graph is of time series. In this case, the dataset’s de-
fined time variable will be used to locate each point’s position on the X-axis.
The graph in Figure 4.10 can be produced similarly. The complete script
for Figure 4.8 of POF is:

open c:\userdata\gretl\data\poe\wa-wheat.gdt

done, estimate your model using least squares as discussed in appendix D and execute
jarque.bera.test(fitols$residual).
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Figure 4.11: The plot of the actual yield and predicted yield from your
estimated model
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ols green const time

genr yhatl = $yhat

genr uhatl = $uhat

gnuplot green yhatl uhatl --with-lines --time-series

The comparable graph in gretl is found in Figure 4.12. Actually, this graph

Figure 4.12: The plot of the actual yield and predicted yield from your
estimated model using the —time-series option
[&] gretl: gnuplot graph E]
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Click on graph For pop-up menu

has had a bit of editing done via gretl’s graph editing dialog shown in Figure
4.13. From Figure 4.13 we have selected the lines tab and changed a few
of the defaults. The legend for each series is changed from the variable’s
name to something more descriptive (e.g., uhat! is changed to Residual).
The line styles were also changed. Steps were used for the residuals to mimic
the output in Figure 4.9 of POE that shows a bar graph of the least squares
residuals. From the stepped line, it becomes more obvious that yield is
probably not linear in time. The X-axis and Main tabs were also used to
change the name of the X-axis from time to Year and to add a title for the
graph.

To explore the behavior of yield further, create a new variable using the
genr command from t3 = time3 /1,000,000 as shown below. The new plot
appears in Figure 4.14.
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Figure 4.13: The graph dialog box can be used to change characteristics of
your graphs. Use the Main tab to give the graph a new name and colors;
use the X- and Y-axes tabs to refine the behavior of the axes and to provide
better descriptions of the variables graphed.
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Figure 4.14: The plot of the actual yield and predicted yield from the model

estimated with the cubic term
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genr t3=time~3/1000000

ols green const t3

genr yhat2 = $yhat

genr uhat2 = $uhat

gnuplot green yhat2 uhat2 --with-lines --time-series

4.6.2 Growth Model Example

Below you will find a script that reproduces the results from the growth
model example in section 4.4.1 of your textbook.

open c:\userdata\gretl\data\poe\wa-wheat.gdt
genr lyield = log(green)
ols lyield const time
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4.6.3 Wage Equation

Below you will find a script that reproduces the results from the wage
equation example in section 4.4.2 of your textbook.

open c:\userdata\gretl\data\poe\cpsl.gdt
genr 1_wage = log(wage)

ols 1l_wage const educ

genr 1b = $coeff(educ) - 1.96 * $stderr(educ)
genr ub = $coeff(educ) + 1.96 * $stderr(educ)
print 1b ub

4.6.4 Predictions in the Log-linear Model

In this example, you use your regression to make predictions about the
log wage and the level of the wage for a person having 12 years of schooling.

open c:\userdata\gretl\data\poe\cps_small.gdt
genr 1_wage = log(wage)

ols 1l_wage const educ

genr lyhat_12 = $coeff(const) + $coeff (educ)*12
genr yhat_12 = exp(lyhat_12)

genr corr_yhat_12 = yhat_12%exp($ess/(2+$df))

4.6.5 Generalized R?

A generalized version of the goodness-of-fit statistic R? can be obtained
by taking the squared correlation between the actual values of the depen-
dent variable and those predicted by the regression. The following script
reproduces the results from section 4.4.4 of your textbook.

open c:\userdata\gretl\data\poe\cps_small.gdt
genr 1_wage = log(wage)
ols 1_wage const educ
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genr 1_yhat = $yhat

genr y = exp(l_yhat)

genr corrl = corr(y, wage)
genr Rsquare = corrl~”2

4.6.6 Prediction Interval

In this script the 95% prediction interval for someone having 12 years of
education is estimated.

open c:\userdata\gretl\data\poe\cps_small.gdt

genr 1_wage = log(wage)

ols 1l_wage const educ

genr lyhat_12 = $coeff(const) + $coeff (educ)*12

genr sig2 = $ess/$df

genr f = sig2 + sig2/$nobs + ((12-mean(educ)) "2)*($stderr(educ)"2)
genr sef = sqrt(f)

genr 1b = exp(lyhat_12-1.96%*sef)

genr ub = exp(lyhat_12+1.96%sef)

print lyhat_12 sig2 f sef 1b ub

4.7 Script

open c:\userdata\gretl\data\poe\food.gdt

ols y const x

genr yhatO = $coeff(const) + $coeff (x)*20

genr £=8013.2941+(8013.2941/40)+4.3818%(20-19.6047) **2
genr ub=yhat0+2.0244*sqrt(f)

genr lb=yhat0-2.0244*sqrt(f)

#Prediction Intervals

ols y const x

genr yhatO=$coeff (const)+20*$coeff (x)
genr sig2 = $ess/$df
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genr f = sig2 + sig2/$nobs + ((20-mean(x))~2)*($stderr(x)~2)
genr 1lb = yhatO-critical(t,$df,0.025)*sqrt(f)
genr ub = yhatO+critical(t,$df,0.025)*sqrt(f)

#Plot predictions vs actual food exp

#note: the plot will be written to a file.

#To see the plot, open a console window and execute the commands
ols y const x

genr yhatime = $yhat

gnuplot yhatl y

#Testing normality of errors
ols y const x

genr uhatl = $uhat

summary uhatl

#Wheat yield example

open c:\userdata\gretl\data\poe\wa-wheat.gdt
ols green const time

gnuplot green time

ols green const time

genr yhatl = $yhat

genr uhatl = $uhat

gnuplot green yhatl uhatl --with-lines --time-series

genr t3=time~3/1000000

ols green const t3

genr yhat2 = $yhat

genr uhat2 = $uhat

gnuplot green yhat2 uhat2 --with-lines --time-series

#Growth model example

open c:\userdata\gretl\data\poe\wa-wheat.gdt
genr lyield = log(green)

ols lyield const time

#Wage Equation
open c:\userdata\gretl\data\poe\cps_small.gdt
genr 1_wage = log(wage)
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ols 1l_wage const educ

genr 1b = $coeff(educ) - 1.96 * $stderr(educ)
genr ub = $coeff(educ) + 1.96 * $stderr(educ)
print 1b ub

#Predictions in the Log-linear model

open c:\userdata\gretl\data\poe\cps_small.gdt
genr 1_wage = log(wage)

ols 1_wage const educ

genr lyhat_12 = $coeff(const) + $coeff (educ)*12
genr yhat_12 = exp(lyhat_12)

genr corr_yhat_12 = yhat_12%exp($ess/(2+$df))

#Generalized R-Square

open c:\userdata\gretl\data\poe\cps_small.gdt
genr 1_wage = log(wage)

ols 1l_wage const educ

genr 1_yhat = $yhat

genr y = exp(l_yhat)

genr corrl = corr(y, wage)

genr Rsquare = corrl”2

#Prediction interval

open c:\userdata\gretl\data\poe\cps_small.gdt
genr 1_wage = log(wage)

ols 1l_wage const educ

genr lyhat_12 = $coeff(const) + $coeff (educ)*12
genr sig2 = $ess/$df

genr f = sig2 + sig2/$nobs + ((12-mean(educ)) "2)*($stderr(educ) "2)
genr sef = sqrt(f)

genr 1b = exp(lyhat_12-1.96%*sef)

genr ub = exp(lyhat_12+1.96%sef)

print lyhat_12 sig2 f sef 1b ub
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Multiple Regression Model

The multiple regression model is an extension of the simple model dis-
cussed in Chapter 2. The main difference is that the multiple linear regres-
sion model contains more than one explanatory variable. This changes the
interpretation of the coefficients slightly and requires another assumption.
The general form of the model is shown in equation (5.1) below.

yi =01+ Bexio+ ...+ Brrik +e i=1,2,...,N (5.1)

where y; is your dependent variable, z;; is the i*" observation on the k"
independent variable, k = 2,3, ..., K, ¢; is random error, and 31, (o, . .., Ok
are the parameters you want to estimate. Just as in the simple linear re-
gression model, each error, e;, has an average value of zero for each value of
the independent variables; each has the same variance, o2, and are uncor-
related with any of the other errors. In order to be able to estimate each
of the (s, none of the independent variables can be an exact linear combi-
nation of the others. This serves the same purpose as the assumption that
each independent variable of the simple linear regression take on at least
two different values in your dataset. The error assumptions can be summa-
rized as e;|w2, i3, . . . i iid (0,0%). Recall from Chapter 2 that expression
1d means that the errors are statistically independent from one another
(and therefor uncorrelated) and each has the same probability distribution.
Taking a random sample from a single population accomplishes this.

7
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The parameters (3o, O3, ..., 0k are referred to as slopes and each slope
measures the effect of a 1 unit change in x;; on the average value of y;,
holding all other variables in the equation constant. The conditional inter-
pretation of the coefficient is important to remember when using multiple
linear regression.

The example used in this chapter models the sales for Big Andy’s Burger
Barn. The model includes two explanatory variables and a constant.

Si=p1+ PP+ 3Ai+e i=12,...,N (5.2)

where S; is monthly sales in a given city and is measured in $1,000 in-
crements, P; is price of a hamburger measured in dollars, and A; is the
advertising expenditure also measured in thousands of dollars.

5.1 Linear Regression

The parameters of the model are estimated using least squares which
can be done using the pull-down menus and dialog boxes (GUI) or by using
gretl language itself. Both of these will be demonstrated below. The GUI
makes it easy to estimate this model using least squares. There are actually
two ways to open the dialog box. The first is to use the pull-down menu.
Select Model>Ordinary Least Squares from the main gretl window as
shown below in Figure 5.1. This brings up the dialog box shown in Figure
5.2. As in Chapter 2 you need to put the dependent variable (S) and the
independent variables (const, P, and A) in the appropriate boxes. Click OK
and the model is estimated.

There is a shortcut to get to the specify model dialog box. On the
toolbar located at the bottom of the main gretl window is a button labeled
8. Clicking on this button as shown in Figure 5.3 will open the OLS specify
model dialog box in Figure 5.2.
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Figure 5.1: Using the pull-down menu to open the ordinary least squares

dialog box.
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Figure 5.3: The OLS shortcut
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5.2 Big Andy’s Burger Barn

To estimate the model for Big Andy’s, we’ll use a script file. The follow-
ing two lines are typed into a script file which is executed by clicking your
mouse on the “gear” button of the script window.

open c:\userdata\gretl\data\poe\andy.gdt
ols S const P A

This assumes that the gretl data set andy.gdt is installed at c:\userdata\
gretl\data\poe\. The results, in tablular form, are in Table 5.1 and match
those presented in the textbook.

In addition to providing information about how sales change when price
or advertising change, the estimated equation can be used for prediction.
To predict sales revenue for a price of $5.50 and an advertising expenditure
of $1,200 we can use the genr to do the computations. From the console,

? genr S_hat = $coeff(const) + $coeff(P)*5.5 + $coeff(A)*1.2
Generated scalar S_hat (ID 4) = 77.6555
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Table 5.1: The regression results from Big Andy’s Burger Barn

Variable

const
P
A

Model 1: OLS estimates using the 75 observations 1-75
Dependent variable: S

Coefficient Std. Error
118.914 6.35164
—7.9078 1.09599

1.86258 0.683195

Mean of dependent variable
S.D. of dependent variable
Sum of squared residuals
Standard error of residuals ()
Unadjusted R?

Adjusted R?

F(2,72)

Log-likelihood

Akaike information criterion
Schwarz Bayesian criterion
Hannan—Quinn criterion

t-statistic

18.7217
—7.2152
2.7263

77.3747
6.48854
1718.94
4.88612
0.448258
0.432932
29.2479
—223.87
453.739
460.691
456.515

p-value

0.0000
0.0000
0.0080
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which matches the result in your text.

5.2.1 SSE, R? and Other Statistics

Other important output is included in Table 5.1. For instance, you’ll find
the sum of squared errors (SSE) which gretl refers to as “sum of squared
residuals.” In this model SSE = 1718.94. To obtain the estimated variance,
&2, divide SSE by the available degrees of freedom to obtain

52 SSE  1718.94
 N-K 7%-3

= 23.874 (5.3)

The square root of this number is referred to by gretl as the “Standard error
of residuals, 6”7 and is reported to be 4.88612. Gretl also reports R? in this
table. If you want to compute your own versions of these statistics using
the total sum of squares from the model, you’ll have to use Anaylsis>ANOVA
from the model’s pull-down menu to generate the ANOVA table. Refer to
section 4.2 for details.

To compute your own from the standard gretl output recall that

. [SsT
Uy— ﬁ (54)

The statistic 6, is printed by gretl and referred to as “S.D. of dependent
variable” which is reported to be 6.48854. A little algebra reveals

SST = (N — 1)6’3 = T4 % 6.48854 = 3115.485 (5.5)
Then,
SSE 1718.94
2
r SST 3115.485 0448 (5:6)

Otherwise, the goodness-of-fit statistics printed in the gretl regression out-
put or the ANOVA table are perfectly acceptable.

Gretl also reports the adjusted R? in the standard regression output.
The adjusted R? imposes a small penalty to the usual R? when a variable
is added to the model. Adding a variable with any correlation to y always
reduces SSE and increases the size of the usual R?. With the adjusted
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version, the improvement in fit may be outweighed by the penalty and it
could become smaller as variables are added. The formula is:

> . SSE/(N-K)

R =1 SST/(N —1) (5:7)

This sometimes referred to as “R-bar squared,” (i.e., R? ) although in gretl
it is called “adjusted R-squared.” For Big Andy’s Burger Barn the adjusted
R-squared is equal to 0.4329.

5.2.2 Covariance Matrix and Confidence Intervals

Gretl can be used to print the variance-covariance matrix by using the
pull-down menu as shown in Figure 2.13. Or, the --vcv option can be used
with the ols command to obtain this result from the console or using a
script. The example code is:

open c:\userdata\gretl\data\poe\andy.gdt
ols S const P A —-vcv

Confidence intervals are obtained using the genr command in the same
way as in Chapter 3. The gretl commands

$coeff(P) - critical(t,$df,0.025) * $stderr(P)
$coeff(P) + critical(t,$df,0.025) * $stderr(P)

genr bL
genr bU

Remember, you can also summon the 95% confidence intervals from the
model window using the pull-down menu by choosing Analysis>Confidence
intervals for coefficients.

5.2.3 t-Tests, Critical Values, and P-values

In Section 3.3 we used the GUI to obtain test statustics, critical values
and p-values. However, it is much easier to use the the genr command from
either the console or as a script to compute these. For t-ratios and one- and
two-sided hypothesis tests the appropriate commands are:
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genr t1 = ($coeff(P)-0)/$stderr(P)
genr t2 = ($coeff(A)-1)/$stderr(A)

The critical values for the t7o and the p-values for the two statistics can
be easily obtained using the command

genr c=critical(t,$df,0.025)
pvalue t $df ti
pvalue t $df t2

These last three commands produce the output shown below:

? genr c=critical(t,$df,.025)
Generated scalar c (ID 8) = 1.99346
? pvalue t $df t1

t(72): area to the right of -7.21524 =" 1

(to the left: 2.212e-010)

(two-tailed value = 4.424e-010; complement = 1)
? pvalue t $df t2

t(72): area to the right of 1.26257 = 0.105408
(two-tailed value = 0.210817; complement = 0.789183)

It is interesting to note that when a negative t-ratio is used in the pvalue
function, gretl returns both the area to its right, the area to its left and the
sum of the two areas. So, for the alternative hypothesis that the coefficient
on P is less than zero (against the null that it is zero), the p-value is the
area to the left of the computed statistic is the desired one.
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5.3 Script

open c:\userdata\gretl\data\poe\andy.gdt

#Change the descriptive labels and graph labels
setinfo S -d "Monthly Sales revenue ($1000)" -n "Monthly Sales ($1000)"
setinfo P -d "$ Price" -n "Price"
setinfo A -d "Monthy Advertising Expenditure ($1000)" -n \
"Monthly Advertising ($1000)

#Print the new labels to the screen
labels

#Summary Statistics
summary S P A

#Regression with covariance matrix printed
ols S const P A ——vcv

#Prediction
genr S_hat = $coeff(const) + $coeff(P)*5.5 + $coeff(A)*1.2

#Confidence Intervals

#Price
genr bL = $coeff(P) - critical(t,$df,0.025) * $stderr(P)
genr bU = $coeff(P) + critical(t,$df,0.025) * $stderr(P)

#Advertising
genr bL = $coeff (A)
genr bU = $coeff (A)

critical(t,$df,0.025) * $stderr(A)
critical(t,$df,0.025) * $stderr(A)

+

#t-ratios
#Two tail tests
genr tl = ($coeff(P)-0)/$stderr(P)
genr t2 = ($coeff(A)-0)/$stderr(A)

#0ne tail test
genr t3 = ($coeff(A)-1)/$stderr(A)

#Ctitical value and p-values
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genr c=critical(t,$df,.025)

pvalue t $df t1 #used for both 1 and 2 tail tests
pvalue t $df t2

pvalue t $df t3

86



Chapter

Further Inference in the Multiple
Regression Model

In this chapter several extensions of the multiple linear regression model
are considered. First, we test joint hypotheses about parameters in a model
and then learn how to impose linear restrictions on the parameters. A
condition called collinearity is also explored.

6.1 F-test

An F-statistic can be used to test multiple hypotheses in a linear regres-
sion model. In linear regression there are several different ways to derive and
compute this statistic, but each yields the same result. The one used here
compares the sum of squared errors (SSE) in a regression model estimated
under the null hypothesis (Hp) to the SSE of a model under the alterna-
tive (Hyp). If the sum of squared errors from the two models are similar,
then there is not enough evidence to reject the restrictions. On the other
hand, if imposing restrictions implied by Hg alter SSE substantially, then
the restrictions it implies don’t fit the data and we reject them.

87
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In the Big Andy’s Burger Barn example we estimated the model
Si =1+ PP + B3A; + e (6.1)

Suppose we wish to test the hypothesis that price, P;, has no effect on sales
against the alternative that it does. Thus, Hy : 2 = 0 and H;y : (2 # 0.
Another way to express this is in terms of the models each hypothesis implies.

Hy : B1+ B3A; +e;
Hy: B+ BoP+ B34 + €

The model under Hj is restricted compared to the model under H; since
in it 8o = 0. The F-statistic used to test Hy versus H; estimates each model
by least squares and compares their respective sum of squared errors using
the statistic:

(SSE, — SSE,)/J

F="5sm, /N — k)

~ FJ,N,K if Hy is true (6.2)

The sum of squared errors from the unrestricted model (H;) is denoted
SSE, and that of the restricted model (Hp) is SSE,. The numerator is
divided by the number of hypotheses being tested, J. In this case that is
1 since there is only a single restriction implied by Hy. The denominator
is divided by the total number of degrees of freedom in the unrestricted
regression, N — K. N is the sample size and K is the number of parame-
ters in the unrestricted regression. When the errors of your model are (1)
independently and identically distributed (iid) normals with zero mean and
constant variance (e; iid N(0,02)) and (2) Hp is true, then this statistic has
an F' distribution with J numerator and N — K denominator degrees of free-
dom. Choose a significance level and compute this statistic. Then compare
its value to the appropriate critical value from the F table or compare it’s
p-value to the chosen significance level.

The script to estimate the models under Hy and H; and to compute the
test statistic is given below.

open C:\userdata\gretl\data\poe\andy.gdt
ols S const P A

genr sseu = $ess

genr unrest_df = $df
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ols S const A
genr sser = $ess

genr Fstat=((sser-sseu)/1)/(sseu/(unrest_df))
pvalue F 1 unrest_df Fstat

Gretl refers to the sum of squared residuals (SSE) as the “error sum of
squares” and it is retrieved from the regression results using the syntax
genr sseu = $ess. In this case, $ess points to the error sum of squares
computed in the regression that precedes it. You’ll also want to save the
degrees of freedom in the unrestricted model so that you can use it in the
computation of the p-value for the F-statistic. In this case, the F-statistic
has 2 known parameters (J=1 and N — K=unrest_df) that are used as
arguments in the pvalue function.

There are a number of other ways within gretl to do this test. These are
available through scripts, but it may be useful to demonstrate how to access
them through the GUI. First, you’ll want to estimate the model using least
squares. From the pull-down menu (see Figure 5.1) select Model>0rdinary
Least Squares, specify the unrestricted model (Figure 5.2), and run the
regression. This yields the result shown in Figure 6.1.

You’ll notice that along the menu bar at the top of this window there
are a number of options that are available to you. Choose Tests and the
pull-down menu shown in Figure 6.2 will be revealed. The first four options
in 6.2 are highlighted and these are the ones that are most pertinent to the
discussion here. This menu provides you an easy way to omit variables in
the null, add variables to the alternative, test a sum of your coefficients, or
to test arbitrary linear restrictions on the parameters of your model.

Since this test involves imposing a zero restriction on the coefficient of
the variable P, we can use the omit option. This brings up the dialog box
shown in Figure 6.3. Notice the two radio buttons at the bottom of the
window. The first is labeled Estimate reduced model and this is the one you
want to use to compute equation 6.2. If you select the other, no harm is
done. It is computed in a different way, but produces the same answer in a
linear model. The only advantage of the Wald test (second option) is that
the restricted model does not have to be estimated in order to perform the
test. Given gretl’s speed, there is not much to be gained here from using
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Figure 6.1: The model results from least squares regression using the pull-
down menu

o =]
File Edit Tests Save Graphs Analysis LaTeX |
(]
Model 4: OLS estimates using the 75 observations 1-75
Dependent wvarishle: 3
VARILELE COEFFICIENT STDERRCR T STAT P-VALUE
const 115.914 6.35164 18.722 «0.00001 ##+*
P -7.90785 1.09599 =-7.215 <0.00001 #**
A 1.86258 0.653195 Z.7Z6 0.00504 *#*+
Mean of dependent wariahle = 77.3747
SGtandard deviation of dep. war. = 6.458554
Sum of sguared residuals = 17158.94
Standard error of residuals = 4.55612
Unadjusted R-sguared = 0.4458258
Adjusted R-sguared = 0.432932
F-statistic {2, 72) = 29.2479 (p-value < 0.00001)
Log-likelihood = -223.87
Akaike information criterion (AIC) = 453.739
Schwarz Bayesian criterion (BIC) = 460.691
Hannan-guinn criterion (HQC)] = 456.515 =
Ad
Close |

Figure 6.2: Choosing Tests from the pull-down menu of the model window

reveals several testing options

gretl: model 1 10l =|
File Edit Save @raphs Analysis  LaTex |
o] 5 -
Model 1| Addvariables ing the 75 ohservations 1-75
Dependey Sum of coefficients
Linear restrictions
vy [FICIENT STDERROR T STAT  P-VALUE
Mor-linearity (squares)
const | Morvinearity (jags) 914 6.35164 18.722 <0.00001 *#%
P Bamsey's RESET .90785 1.09599 -7.215  <0.00001 *%%
A Heteroskedasticity 86258 0.653195 Z.7Z6 0.00504 *#*+
Mormality of residual
Hean . . bole = 77.3747
Influential observations
Stand Collinearit ep. var. = 6.45554
Sum of = v s = 1718.94
Standq sutocorrelation uals = 4.88612
Tnadiy spcH 0.443255
Adjus] oo test 432932
F-=zta GUR st 9.2479 (p-wvalue < 0.00001)
i;g_'llc Qustmtest Lo [AIC) 453,739
=1k erion = .
CUSUMSD best
Sehuwa 2Q tes ion (BIC) = 460.691
Hanna] Fanel diagnostics [HQC) = 456.515 e
=

Close
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the Wald form of the test, other than it generates less output to view! Select

Figure 6.3: The Omit variables dialog box available from the Tests pull-
down menu in the model window.
'5. gretl: model tests =101 x|
Select variables to omit

Available vars Selected vars

consk
P
4

Seleck -

=- Remove

{® Estimate reduced maodel

" Wald test, based on covariance matrix

Help | %Qlear ‘ x Cancel ‘ &QK

the variable P and click OK to reveal the result shown in Figure 6.4. The
interesting thing about this option is that it mimics your manual calculation
of the F statistic from the script. It computes the sum of squared errors in
the unrestricted and restricted models and computes equation (6.2) based
on those regressions. Most pieces of software choose the alternative method
(Wald) to compute the test, but you get the same result.

You can also use the linear restrictions option from the pull-down
menu shown in Figure 6.2. This produces a large dialog box that requires
a bit of explanation. The box appears in Figure 6.5. The restrictions you
want to impose (or test) are entered here. Each restriction in the set should
be expressed as an equation, with a linear combination of parameters on
the left and a numeric value to the right of the equals sign. Parameters
are referenced in the form b[variable number], where variable number
represents the position of the regressor in the question, which starts with
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Figure 6.4: The results using the Omit variables dialog box to test zero
restrictions on the parameters of a linear model.

=lalx|
| File Edit Tests 3Save Graphs Analysis LaTes |
Model 2: OLS estimates using the 75 observations 1-75 ‘:J
Dependent wvarishle: 3
VARILELE COEFFICIENT STDERRCR T STAT P-VALUE
const 74,1797 1.79898 41.234 <0.00001 #+*
A 1.73262 0.590324 1.946 0.05550 *
Mean of dependent wariahle = 77.3747
SGtandard deviation of dep. war. = 6.458554
Sum of sguared residuals = 2961.53
Standard error of residuals = 6.36969
Unadjusted BE-sguared = 0.0493197
Adjusted R-sguared = 0.0362967
Degrees of freedom = 73
Log-likelihood = -244.273
Akaike information criterion (AIC) = 492,546
Schwarz Bayesian criterion (BIC) = 497.181
Hannan-guinn criterion (HQC) = 494,397
Comparison of Model 1 and Model 2:
Null hypothesis: the regression parameters are zero for the variables
P
Test statistic: F{l, 72) = 52.0597, with p-wvalus = 4.424e=-010
0f the 3 model selection statistics, 0 have improwved. ]
=
Close |
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Figure 6.5: The linear restriction dialog box obtained using the Linear
restrictions option in the Tests pull-down menu.

‘-. gretl: linear restrictions ;Iglil

Specify restrictions:
(Please refer to Help for guidance)

nrz]=0

List the restrictions here.
‘ Use only one restriction per line.

[~ Use bootstrap

Help x Cancel

Pox

1. This means that (s is equivalent to b[2]. Restricting B2 = 0 is done
by issuing b[2]=0 in this dialog. Sometimes you’ll want to use a restriction
that involves a multiple of a parameter e.g., 383 = 2. The basic principle is
to place the multiplier first, then the parameter, using * to multiply. So, in
this case the restriction in gretl becomes 3*b[3] = 2.

When you use the console or a script instead of the pull-down menu to
impose restrictions, you’ll have to tell gretl where the restrictions start and
end. The restriction(s) starts with a restrict statement and ends with end
restrict. The statement will look like this:

open C:\userdatal\gretl\data\poe\andy.gdt
ols S const P A

restrict

b[2] =0
end restrict

When you have more than one restriction to impose or test, put each re-
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striction on its own line. Here is an example of a set of restrictions from a
gretl script:

restrict
b[1] =0
b[2] - b[3] 0

b[4] + 2xb[5] =1
end restrict

Of course, if you use the pull-down menu to impose these you can omit the
restrict and end restrict statements. The results you get from using the
restrict statements appear in Figure 6.6. The test statistic and its p-value
are highlighted in red.

Figure 6.6: The results obtained from using the restrict dialog box.

/% gretl: linear restrictions 10l =|
b[P] = O =]
Test statistic: F({l, 72) = 52.0597, with p-wvalus = 4.424=-010

Restricted estimates:

VARILELE COEFFICIENT STDERROR T 3TAT P-VALUE
const 74,1797 1.79895 41.234 <0.00001 #*%
F 0. 000000 0. 000000 undefined
L 1.73262 0.590324 1.946 0.05550 *

Standard error of residuals = 6.36969

[«

Close

6.2 Regression Significance

To statistically determine whether the regression is actually a model
of the average behavior of your dependent variable, you can use the F-
statistic. In this case, Hy is the proposition that y does not depend on your



CHAPTER 6. MULTIPLE REGRESSION, CONT. 95

independent variables, and H7 is that it does.

H,: b1+ e;
Hy: B+ oo+ ...+ Brzik + €

The null hypothesis can alternately be expressed as (s, 33, ..., 8k = 0, a set
of K — 1 linear restrictions. In Big Andy’s Burger Barn the script is

open C:\userdatal\gretl\data\poe\andy.gdt
ols S const P A

genr sseu = $ess

genr unrest_df = $df

ols S const
genr sser = $ess
genr rest_df = $df

genr J = rest_df - unrest_df
genr Fstat=((sser-sseu)/J)/(sseu/(unrest_df))
pvalue F J unrest_df Fstat

The only difference is that you now have two hypotheses to test jointly and
the numerator degrees of freedom for the F-statistic is J = K —1 = 2.
The saved residual degrees of freedom from the restricted model can be
used to obtain the number of restrictions imposed. Each unique restriction
in a linear model reduces the number of parameters in the model by one.
So, imposing one restriction on a three parameter unrestricted model (e.g.,
Big Andy’s), reduces the number of parameters in the restricted model to
two. Let K. be the number of regressors in the restricted model and K, the
number in the unrestricted model. Subtracting the degrees of freedom in the
unrestricted model (N — K,,) from those of the restricted model (N — K,.) will
yield the number of restrictions you’ve imposed, i.e., (N - K,)— (N - K,) =
(Ky — K,)=J.

The test of regression significance is important enough that it appears
on the default output of every linear regression estimated using gretl. The
statistic and its p-value are highlighted in Figure 6.7. The F-statistic for this
test and its p-value are highlighted. Since the p-value is less than = .05, we
reject the null hypothesis that the model is insignificant at the five percent
level.
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Figure 6.7: The overall F-statistic of regression significance is produced by

default when you estimate a linear model using least squares.
/& gretl: model 2 1Ol x|

File Edit Tests Save Graphs Analysis LaTeX

Model 2: OLS estimates using the 75 observations 1-75
Dependent wvarishle: 3

VARILELE COEFFICIENT STDERROR T 3TAT P-VALUE
const 115.914 6.35164 15.722 <0.00001 #*+%
F =7.90785 1.0855959 =7.215 <0.00001 #*%
L 1.86258 0.683185 Z.726 0.00504 *#%%*

Mean of dependent wariahle = 77.3747
SGtandard deviation of dep. war. = 6.458554
Sum of sguared residuals = 17158.94
Standard error of residuals = 4.55612
Unadjusted R-sguared = 0.4458258

Adjusted R-sguared = 0.432932

F-statistic (2, 72) = 29.2479 (p-value < 0.00001)| significance

Log-Iikelihood = 225,87

Akaike information criterion (AIC) = 453.739

Schwarz Bayesian criterion (BIC) = 460.691

Hannan-guinn criterion (HQC)] = 456.515 e

Overall F-test of regression

Close

6.3 Extended Model

In the extended model, we add the squared level of advertising to the
model, A2, which permits the possibility of diminishing returns to advertis-
ing. The model to be estimated is

Si = B+ P + BsAi + B1A? + ¢ (6.3)

This time, open a console window from the toolbar by clicking on the open
gretl console button; then, generate a new variable, A? using genr A2 =
AxA. Then estimate (6.3) using the command: ols S const P A A2. This
yields the output in Figure 6.8:

6.3.1 Is Advertising Significant?

The marginal effect of another unit of advertising on average sales is

O0F[Sales;
[QAZ»] = (3 + 204 A; (6.4)
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Figure 6.8: The results of the extended model of Big Andy’s Burger Barn

obtained from the gretl console.

Close

o =]
gretl console: type 'help' for a list of commands :E
? genr AZ = A¥L
Generated wvector A2 (ID 9)
? ols 3 const P A AZ
Model 3: OLS estimates using the 75 observations 1-75
Dependent wvarishle: 3
VARILELE COEFFICIENT STDERRCR T STAT P-VALUE
const 109.719 6.79905 16.137 «<0.00001 ##*+*
P =7.64000 1.04594 =7.304 <0.00001 #**
A 1z.151z2 3.55616 3.417 0.00105 ##*+*
AZ —-2.76796 0.940624 —-2.943 0.00439 *##*+
Mean of dependent wariahle = 77.3747
SGtandard deviation of dep. war. = 6.458554
Sum of sguared residuals = 1532.08
Standard error of residuals = 4.64528
Unadjusted R-sguared = 0.508235
Adjusted R-sguared = 0.437456
F-statistic {3, 71) = 24.4593 (p-value < 0.00001)
Log-likelihood = -219.554
Akaike information criterion (AIC) = 447,103
Schwarz Bayesian criterion (BIC) = 456.378 -
Hannan-guinn criterion (HQC) = 450.809
Ad




CHAPTER 6. MULTIPLE REGRESSION, CONT. 98

This means that the effect of another unit of advertising depends on the
current level of advertising, A;. To test for the significance of all levels of
advertising requires you to test the joint hypothesis Hy : 83 = 84 = 0 against
the alternative H, : 83 # 0 or B4 # 0. From the console, following estimation
of the full model, type omit A A2 and gretl will execute the omit variables
test discussed in the preceding section. The console window is shown in
Figure 6.9 below and the outcome from the omit test is highlighted.

Figure 6.9: Testing the significance of Advertising using the omit statement
from the console.

-ioix

BeBm R x

? omit A AZ Zl

Model 4: OLS estimates using the 75 observations 1-75
Dependent wvarishle: 3

VARILELE COEFFICIENT STDERROR T 3TAT P-VALUE
const 1z1.900 6.52629 15.678 <0.00001 #*+%
F —7.82907 1.14286 —-6.850 <0.00001 #+*%

Mean of dependent wariahle = 77.3747
SGtandard deviation of dep. war. = 6.458554
Sum of sguared residuals = 1896.39
Standard error of residuals = 5.09686
Unadjusted R-sguared = 0.391301

Adjusted R-sguared = 0.382963

Degrees of freedom = 73

Log-likelihood = -227.554

Akaike information criterion (AIC) = 459,107
Schwarz Bayesian criterion (BIC) = 463.742
Hannan-guinn criterion (HQC) = 460.958

Comparison of Model 3 and Model 4:

HNull hypothesis: the regression parameters are zZero for the wariasbles

L
Az

Test statistic: F(2, 71) = §.44136, with p-walus = 0.000514159
Of the 3 model selection statistics, 0 have improwved.

Close
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6.3.2 Optimal Level of Advertising

The optimal level of advertising is that amount where the last dollar
spent on advertising results in only 1 dollar of additional sales (we are as-
suming here that the marginal cost of producing and selling another burger
is zero!). Find the level of level of advertising, A,, that solves:

OE[Sales;
[aies] — B+ 28,4, = $1 (6.5)

Plugging in the least squares estimates from the model and solving for A,
can be done in gretl. A little algebra yields

$1 — 3
A, =
2034

The script in gretl to compute this follows.

(6.6)

open C:\userdata\gretl\data\poe\andy.gdt
genr A2 = AxA

ols S const P A A2

genr Ao =(1-$coeff(A))/(2+$coeff (A2))

which generates the result:

7 genr Ao =(1-$coeff(A))/(2x$coeff (A2))
Generated scalar Ao (ID 7) = 2.01434

This implies that the optimal level of advertising is estimated to be approx-
imately $2014.

To test the hypothesis that $1900 is optimal (remember, A is measured
in $1000)

Hy: B3+26019=1
Hy:  B3+2019#1

you can use a t-test or an F-test. Following the regression, use
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restrict
b[3] + 3.8%b[4]=1
end restrict

Remember that b[3] refers to the coefficient of the third variable in the
regression (A) and b[4] to the fourth. The output from the script is shown
in Figure 6.10.

Figure 6.10: Testing whether $1900 in advertising is optimal using the re-

strict statement.
/& gretlk: script output =]

EEDHR B9 *

CITWELD DEYESITHEID CLOITELDITIN ThIL T = T30.3 70 3
Hannan-guinn criterion (HQC) = 450.809

? genr Lo ={l-fcoeffild))/(2*fcoeff(LZ))
Generated scalar Ao (ID 5) = 2.01434

? restrict

? b3 + 3.5%h4=1

? end restrict

Restriction:

b[i] + 3.8%h[Ak2] = 1

Test statistic: Fi{l, 71) = 0.936195, with p-wvalues = 0.336543

Restricted estimates:

VARILELE COEFFICIENT STDERROR T 3TAT P-VALUE
const 110.359 6.76380 16.316 <0.00001 #*+%
F =7.60310 1.04475 =7.277 «<0.00001 #*%
L 11.9308 3.54728 3.363 0.001z4 *#*
Az —-2.87652 0.933496 -3.081 0.00z29z2 *#%%

Standard error of residuals = 4.643:22

[«

Close

6.4 Nonsample Information

In this section we’ll estimate the beer demand model. The data are in
beer.gdt and are in level form. The model to be estimated is

In(Q;) = B1 + Baln(PB;) + B3ln(PL;) + Baln(PR;) + Bsin(M;) +e; (6.7)

The first thing to do is to convert each of the variables into natural logs.
Gretl has a built in function for this that is very slick. From the main win-
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dow, highlight the variables you want to transform with the cursor. Then go
to Add>Logs of selected variables from the pull-down menu as shown
in Figure 6.11. This can also be done is a script or from the console using

Figure 6.11: Use the pull-down menu to add the natural logs of each variable
~1olx|

File Tools Data View Sample  Yariable Model Help

beer,gdt *

D # |\-'ariab|e — |Desc Squares of selected variables
Lags of selected variables

0 consk auko
1 M Tncon Eirst differences of selected variables _
> PEB Price | t99 differences of selected variables
3 PL Price | 22asonal differences of selected variables
+ PR Price Index variable
5 Q LJIET, Time trend
Randaom variable 3

Petindic dummies

Unit: dummies

Time durmies

Durnmigs For selected discrete variables

Define new variable, .,

4] | i

Undated: Full range 1 - 30

Izl Ed =] el e S

the command logs Q PB PL PR M. The natural log of each of the variables
is obtained and the result stored in a new variable with the prefix 1_ (“el”
underscore).

No money illusion can be parameterized in this model as B2 + 53 + (4 +

085 = 0. This restriction is easily estimated within gretl using the restrict
dialog or a script as shown below.

open C:\userdata\gretl\data\poe\beer.gdt
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Figure 6.12: gretl output for the beer demand

? restrict

? b2+b3+bd+b5=0

? end restrict

Restriction:

b[1_PB] + b[1_PL] + b[1_PR] + b[1_M] = O

Test statistic: F(1, 25) = 2.49693, with p-value = 0.126639

Restricted estimates:

VARIABLE COEFFICIENT STDERROR T STAT P-VALUE
const -4.79780 3.71390 -1.292  0.20778
1_PB -1.29939 0.165738 -7.840 <0.00001 #*x*x*
1_PL 0.186816 0.284383 0.657 0.51701
1_PR 0.166742 0.0770752 2.163 0.03989 *x
1M 0.945829 0.427047 2.215 0.03574 *x

Standard error of residuals = 0.0616756

logs Q PB PL PR M
ols 1_Q const 1_PB 1_PL 1_PR 1_M
restrict
b2+b3+b4+b5=0
end restrict

The syntax for the restrictions is new. Instead of b[2]+Db[3]+b[4]+b[5]=0
a simpler form is used. This is undocumented in the version I am using
(1.6.5) and I am uncertain of whether this will continue to work. It does for
now and I've shown it here. Apparently gretl is able to correctly parse the
variable number from the variable name without relying on the brackets.
The output from the gretl script output window appears in Figure 6.12.
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6.5 Model Specification

There are several issues of model specification explored here. First, it is
possible to omit relevant independent variables from your model. A rele-
vant independent variable is one that affects the mean of the dependent
variable. When you omit a relevant variable that happens to be correlated
with any of the other included regressors, least squares suffers from omitted
variable bias.

The other possibility is to include irrelevant variables in the model.
In this case, you include extra regressors that either don’t affect y or, if
they do, they are not correlated with any of the other regressors. Including
irrelevant variables in the model makes least squares less precise than it
otherwise would be—this increases standard errors, reduces the power of your
hypothesis tests, and increases the size of your confidence intervals.

The example used in the text uses the dataset edu_inc.gdt. The first
regression

famine; = (1 + B2 * he; + Bawe; + [akl6; + Bsxis + Pevic + € (6.8)

where faminc is family income, he is husband’s years of schooling, we is
woman’s years of schooling, and kl6 are the number of children in the house-
hold under age 6. Several variations of this model are estimated. The first
includes only he, another only he and we, and one includes the two irrelevant
variables, x5 and xg. The gretl script to estimate these models and test the
implied hypothesis restrictions follows. If you type this in yourself, omit the
line numbers.

#line code

01 open c:\userdata\gretl\data\poe\edu_inc.gdt
02 ols faminc const he we k16 x5 x6

03 modeltab add

04 omit x5 x6

05 modeltab add

06 omit k16

o7 modeltab add

08 omit we

09 modeltab add
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10 modeltab show

The models can be estimated and saved as icons (File>Save to session
as icon) within gretl. Once they’ve all been estimated and saved as icons,
open a session window (Figure 1.9) and drag each model onto the model
table icon. Click on the model table icon to reveal the output shown in
Figure 6.13.

In the above script, we’ve used the modeltab function after each esti-
mated model to add it to the model table. The final line tells gretl to
display (show) the resulting model table.

Figure 6.13: Save each model as an icon. Open the session window and drag
each model to the model table icon. Click on the model table icon to reveal
this output.

BE®R ® x|

QL3 estimates
Dependent wvarisble: faminec
Hodel 1 Hodel 2 Model 3 Hodel 4
const -7559 -7755 -5534 Z.619e+04%*
{1.120e+04) (1.116e+04) (1.123e+04) (5541
he 3340%% Fala+w F13z%* S5155%+*
(1250) [796.7) (802.9) [655.5)
we 559 % 477TEE 4523%%
(2278 [1061) (1066)
klg -1.420e+04%* —-1.431e+04*%
(5044 (5004)
x5 855.8
(2242
x6 —-1067
(1952
n 425 428 425 425
Adj. R**Z 0.16581 0.1714 0.1574 0.1237
1nL -5142.z20 -5142.37 -5146.45 -5155.33
Standard errors in parentheses
* indicates significance at the 10 percent lewvel
**% indicates significance at the 5 percent lewvel

Close

One word of caution is in order about the given script and its interpre-
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tation. The omit statement tests the implied restriction (the coefficient on
the omitted variable is zero) versus the estimated model that immediately
precedes it. Thus, when we test that the coefficient on k16 is zero in line
06, the alternative model is the restricted model from line 04, which already
excludes x5, and 6. Thus, only one restriction is being tested. If your in-
tention is to test all of the restrictions (omit x5, z6 and kl6) versus the the
completely unrestricted model in line 02 that includes all of the variables,
you’ll need to modify your code. I'll leave this an an exercise.

6.6 RESET

The RESET test is used to assess the adequacy of your functional form.
The null hypothesis is that your functional form is adequate. The alternative
is that it is not. The test involves running a couple of regressions and
computing an F-statistic.

Consider the model

Yi = B1 + Boxio + B3wiz + €; (6.9)
and the hypothesis
Hy:  Ely|zi, i3] = b1 + foxio + B33
H1 . not Ho

Rejection of Hy implies that the functional form is not supported by the
data. To test this, first estimate (6.9) using least squares and save the
predicted values, 7;. Then square and cube gy and add them back to the
model as shown below:

Yi = B1+ Bomio + Bazis + MY; + e

yi = Bi+ Bawio + Baiz + by + 1205 + e

The null hypotheses to test (against alternative, ‘not Hy’) are:
HO : Y1 = 0
Hy: m=7%=0

Estimate the auxiliary models using least squares and test the significance
of the parameters of the ¢°. This is accomplished through the following
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script. Note, the reset command issued after the first regression computes
the test associated with Hg : 71 = 9 = 0. It is included here so that you
can compare the ‘canned’ result with the one you compute using the two
step procedure suggested above. The two results should match.

open c:\userdata\gretl\data\poe\cars.gdt
ols mpg const cyl eng wgt
reset

ols mpg const cyl eng wgt
genr y = $yhat
genr y2 = y*y
genr y3 = y2%y

ols mpg const cyl eng wgt y2
omit y2

ols mpg const cyl eng wgt y2 y3
omit y2 y3

6.7 Cars Example

The data set cars.gdt is included in package of datasets that are dis-
tributed with this manual. The script to reproduce the results from your
text is

open c:\userdata\gretl\data\poe\cars.gdt
ols mpg const cyl eng wgt

vif

omit cyl eng

The test of the individual significance of cyl and eng can be read from the
table of regression results. Neither are significant at the 5% level. The joint
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test of their significance is performed using the omit statement. The F-
statistic is 4.298 and has a p-value of 0.0142. The null hypothesis is rejected
in favor of their joint significance.

The new statement that requires explanation is vif. vif stands for vari-
ance inflation factor and it is used as a collinearity diagnostic by many pro-
grams, including gretl. The vif is closely related to the statistic suggested
by Hill et al. (2008) who suggest using the R? from auxiliary regressions to
determine the extent to which each explanatory variable can be explained as
linear functions of the others. They suggest regressing x; on all of the other
independent variables and comparing the RJZ from this auxiliary regression
to 10. If the R? exceeds 10, then there is evidence of a collinearity problem.

The vif; actually reports the same information, but in a less straight-
forward way. The vif associated with the j** regressor is computed

1

2
1 - R;

vif; = (6.10)

which is, as you can see, simply a function of the R? from the j regressor.
Notice that when RJQ- > .80, the vif; > 10. Thus, the rule of thumb for the
two rules is actually the same. A vif; greater than 10 is equivalent to an
R? greater than .8 from the auxiliary regression.

The output from gretl is shown below:

Variance Inflation Factors

Minimum possible value = 1.0
Values > 10.0 may indicate a collinearity problem

2) cyl 10.516
3) eng 15.786
5) wgt 7.789

VIF(j) = 1/(1 - R(j)"2), where R(j) is the multiple
correlation coefficient between variable j and the
other independent variables
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Once again, the gretl output is very informative. It gives you the threshold
for high collinearity (vif;) > 10) and the relationship between vif; and Rjz.
Clearly, these data are highly collinear. Two variance inflation factors above
the threshold and the one associated with wgt is fairly large as well.

The variance inflation factors can be produced from the dialogs as well.
Estimate your model then, in the model window, select Tests>Collinearity
and the results will appear in gretl’s output.

6.8 Script

open C:\userdata\gretl\data\poe\andy.gdt
ols S const P A

genr sseu = $ess

genr unrest_df = $d4f

ols S const A
genr sser = $ess

genr Fstat=((sser-sseu)/1)/(sseu/(unrest_df))
pvalue F 1 unrest_df Fstat

ols S const
genr sser = $ess
genr rest_df = $df

genr J = rest_df-unrest_df
genr Fstat=((sser-sseu)/J)/(sseu/(unrest_df))
pvalue F J unrest_df Fstat

genr A2 = AxA
ols S const P A A2
genr Ao =(1-$coeff (A))/(2*$coeff (A2))

restrict
b3 + 3.8x%b4=1
end restrict
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open C:\userdata\gretl\data\poe\beer.gdt
logs Q PB PL PR M
ols 1_Q const 1_PB 1_PL 1_PR 1_M
restrict

b2+b3+b4+b5=0
end restrict

open c:\userdata\gretl\data\poe\edu_inc.gdt
ols faminc const he we kl6 xb x6

modeltab add

omit x5 x6

modeltab add

omit k16

modeltab add

omit we

modeltab add

modeltab show

open c:\userdata\gretl\data\poe\cars.gdt
ols mpg const cyl eng wgt
reset

ols mpg const cyl eng wgt
genr y = $yhat
genr y2 = y*y
genr y3 = y2%y

ols mpg const cyl eng wgt y2
omit y2

ols mpg const cyl eng wgt y2 y3
omit y2 y3

ols mpg const cyl eng wgt
vif
omit cyl eng
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Chapter

Nonlinear Relationships

In Chapter 7 of Principles of Econometrics, the authors consider several
methods for modeling nonlinear relationships between economic variables.
As they point out, if the slope (the effect of one variable on another) changes
for any reason, then the relationship is nonlinear. Specifically, we examine
the use of polynomials, dummy variables, and interaction effects to make
the basic linear regression model much more flexible.

7.1 Polynomials

The first model considered is a basic wage equation, where the worker’s
wage depends of his level of education and experience. We suspect that
there are diminishing returns to experience and hence that the wage benefit
of another year of experience will decline as a work gains experience.

wager = B1 + Poeduct + Bsexpery + ﬁ4expe7"t2 + ey (7.1)
The marginal effect of another year of experience on the average wage is
OF (wage
9E(wagey) = (3 + 20B4expery (7.2)
dexpery

Diminishing returns implies that 83 > 0 and 54 < 0. The maximum is
attained when the slope of the function is zero so setting equation (7.2)

110
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equal to zero and solving for exper defines the level of experience that we
expect will maximize wages.

B3 + 2Bsexpery =0 and expery = —(3/204. (7.3)

Using gretl and the 1000 observations from the 1997 CPS stored in the
gretl dataset cps_small.gdt we use the following script:

open c:\userdata\gretl\data\poe\cps_small.gdt
genr exper2 = exper”2
ols wage const educ exper exper?2

which yields the result

wage = — 9.818 + 1.210 educ + 0.341 exper — 0.0051 exper2
(—9.306)  (17.228) (6.629) (—4.252)

T =1000 R?=0.2687 F(3,996) =123.38 & =5.3417

(t-statistics in parentheses)

The marginal effect for someone with 18 years of experience is obtained
by using the statement scalar me18=$coeff (exper)+2*$coeff (exper2)*18
which yields the desired result. Similarly, the turning point can be computed
using the command scalar turnpt=-$coeff (exper)/(2*x$coeff (exper2)).
Notice, the scalar command is used instead of genr here because the result
is a single number rather than a data series. You could use genr and obtain
exactly the same result. There is little reason to prefer scalar over genr for
the generation of scalars in gretl, but I've developed the habit of referring
to a single number generated by other software as a scalar and I try to follow
this convention in gretl. Actually, for scalars in gretl you could omit the
prefix altogether. In recent versions of gretl it is unnecessary as you can see
from Figure 7.1. In this figure, the same computation is made using genr,
scalar, and without either!

As noted earlier gretl includes a data utility that makes it very easy to
add the square of experience to your data file. First, select the variable you
want to transform by highlighting it with the cursor. Then from the main
gretl window use Add>Squares of selected variables to add them to
the data set.



CHAPTER 7. NONLINEAR RELATIONSHIPS 112

Figure 7.1: Using genr and scalar
“4. gretl: script output - |EI|1|

BeabhR B x

? zoalar mel = jooefl (exper)+2+icoeff (experz) *18

Generated scalar mwel (ID 11) = 0.157599

? genr meZ = §coeff(exper)+E*icoeff (experi) *15

Generated scalar meZ (ID 12) = 0.157599

? me3d = §coeff(exper)+*icoeff (experi) *15

Generated scalar wed (ID 13) = 0.157599 :‘
-

Close

There are a number of other transformations you can make in this way,
including add a time trend, logs, lags, differences and dummy variables for
units or for panels. The pull-down list is illustrated in Figure 4.9.

As mentioned earlier some of the choices in Figure 4.9 are greyed out,
meaning that they can not be selected at this time. This is because they
are time series or panel specific functions and can only be used if you have
first designated your data as such. To set your data up as time series use
the Data>Dataset structure pull-down menu which is obtained as shown
in Figure 7.2 below. Clicking on Dataset structure reveals the dialog box
shown in Figure 7.3. If you select time series you will be taken to additional
boxes that allow you to define its periodicity (yearly, quarterly, monthly,
etc.) and the dates the time series covers. This is a very nice utility and I
have used it to convert many of the POFE datasets to time series for you.
We will return to this topic in later chapters.

7.2 Interaction Terms

Another tool for capturing some types of nonlinearity is the creation
of interaction terms. An interaction term is a variable that is created by
multiplying two or more variables together. As discussed in POE, interaction
terms are useful in allowing the marginal effect of a change in an independent
variable on the average value of your dependent variable to be different for
different observations in your sample. For instance, you may decide that the
average return to another year of schooling is higher the younger a person
is, other things being equal. To capture this effect in a model of wages you
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Figure 7.2: Data>Dataset Structure pull-down menu

% gretl -0l x|
File Tools View Add Sample  Yariable  Model Help |
pizza.gdt Select all Chrl+A

1D # |Variab|e Display values |
0 const | Edit values

1 piz Add observations. ..

25 Remove extra observations
3 E1

4 E2 Read info

5 Ex Edit info

£y Print description

add case markers. ..
Removwe case markers

Dataset structure. ..
Compact data. .,
Expand data, ..
Transpose data...

Undated: Full range 1 - 40

|@ || O = @R e L] 2 S|

Figure 7.3: Dataset Structure dialog box

*1‘ Data structure W ;lglil

Struckure of dataset

("' Time series

(" Panel

x Cancel é Forward
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could create an interaction between years of schooling (5;) and a person’s
age (A;) by generating a new variable SA; = S; * A; and including it as a
regressor in your model. This is the overall gist of the pizza example from
your textbook, were a person’s age and income are interacted and included
in a basic model of pizza demand.

7.3 Examples

7.3.1 Housing Price Example

The model to be estimated is

price; = 81 + drutowns + Bosqfty + vsqfty x utowny

7.4
+ Bsages + dopools + d3 fplace; + e4 (74)

The script to estimate this model is

open c:\userdata\gretl\data\poe\utown.gdt

genr p = price/1000

genr sqft_ut = sqft*xutown

ols price const utown sqft sqft_ut age pool fplace

Notice that the dependent variable, price, has been rescaled to be measured
in $1,000 increments. This basically reduces the sizes of the estimated coef-
ficients and standard errors by a factor of 1,000. It has no effect on t-ratios
or their p-values. The results appear below.

D= 24.5 +27.453 utown + 0.07612 sqft + 0.01299 sqft_ut
(3.957)  (3.259) (31.048) (3.913)

— 0.190 age + 4.377 pool + 1.649 fplace
(=3.712) (3.658) (1.697)

T =1000 R®>=0.8698 F(6,993)=1113.2 & =15.225

(t-statistics in parentheses)
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7.3.2 CPS Example

In this example, the cps_small.dat data are used to estimate wage equa-
tions. The basic equation is

wage; = (1 + Paeduc; + d1black; + da female; + yblack; x female; +e; (7.5)

In this specification white-males are the reference group. The parameter
61 measures the effect of being black, the parameter do measures the effect
of being female, and the parameter v measures the effect of being black and
female, all measured relative to the white-male reference group.

The first part of the script generates the interaction between females
and blacks and then uses least squares to estimate the coefficients. The
next line uses the omit statement to omit the three dummy variables (black,
female, b_female) from the model to estimate a restricted version. Further,
it performs the F-test of the joint null hypothesis that the three coefficients
(01,02,7) are zero against the alternative that at least one of them is not.

The next model adds the three regional dummies and tests the null hy-
pothesis that they are jointly zero. Then additional interactions are created
between south and the other variables. Finally, gretl’s wls command is
used to estimate separate regressions for southerners and non southerners.
Here is the script file to compute all of the results for the the CPS examples.

open c:\userdata\gretl\data\poe\cps_small.gdt

genr b_female = black*female
ols wage const educ black female b_female
omit black female b_female

ols wage const educ black female b_female south midwest west
omit south midwest west

genr ed_south = educ*south
genr b_south = black*south
genr f_south = female*south
genr b_f_sth = black*female*south
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ols wage const educ black female b_female south \
ed_south b_south f_south b_f_sth
omit south ed_south b_south f_south b_f_sth

The results are collected in model table 7.1 using the modeltab function.

7.3.3 Chow Test

The Chow test is an easy way to test the equivalency of two regressions
estimated using different subsets of the sample. In this section I’ll show you
a trick that you can use for estimating subset regressions and then how to
perform the Chow test.

Suppose you wanted to estimate separate wage equations based on the
model in equation (7.5): one regression for southerners and another for
everyone else. Gretl can accomplish this using the weighted least squares,
wls, estimator. The weighted least squares estimator takes the model

yi = B1 + Bazia + Baxis + ... + BrTik + € (7.6)
and reweighs it using weights, w; according to
wi x y; = Prw; + Pow; x Tio + Paw; * T3 + . .. + Prw; * i +w; xe; (7.7)

and estimates the coefficients using least squares. This estimator is used
later in the book for different purposes, but here it can be used to omit
desired observations from your model. Basically, what you want to do is to
let w; = 1 for all observations you want to include and w; = 0 for those you
want to exclude.

The syntax for the wls command is simple.

wls w y const x2 x3 x4

First call for the weighted least squares estimator with wls; next specify the
weights to be used (w); then, state the regression to be estimated y const
x2 x3 x4.
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Table 7.1: CPS results

OLS estimates
Dependent variable: wage

Model 1 Model 2 Model 3 Model 4 Model 5

const —3.230"*  —4.912**  —2.456"  —3.230"* —3.578**
(0.9675) (0.9668) (1.051) (0.9675) (1.151)
educ 1.117** 1.139** 1.102** 1.117** 1.166**
(0.06971) (0.07155) (0.06999) (0.06971) (0.08241)
black —1.831** —1.608*  —1.831"* —0.4312
(0.8957) (0.9034) (0.8957) (1.348)
female —2.552%* —2.501**  —2.552%  _—2.754**
(0.3597) (0.3600) (0.3597) (0.4257)
b_female  0.5879 0.6465 0.5879 0.06732
(1.217) (1.215) (1.217) (1.906)
south —1.244** 1.302
(0.4794) (2.115)
midwest —0.4996
(0.5056)
west —0.5462
(0.5154)
ed_south —0.1917
(0.1542)
b_south —1.744
(1.827)
f_south 0.9119
(0.7960)
b_f_sth 0.5428
(2.511)
n 1000 1000 1000 1000 1000
R2 0.2451 0.2016 0.2482 0.2451 0.2490
/ —3107.86 —3137.43 —3104.33 —3107.86 —3102.81

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level
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In the context of equation (7.5) generate a new dummy variable that
takes the value 1 for nonsoutherners and zero for southerners; then, use
weighted least squares. The following script uses this approach to estimate
the two sample subsets. The sum of squared errors are saved for later use.

wls nonsouth wage const educ black female b_female
scalar sse_ns = $ess

wls south wage const educ black female b_female
scalar sse_s = $ess

If the coefficients for southerners are equal to those for nonsoutherners, then
you would pool the two subsamples together and estimate the model using
the command ols wage const educ black female b_female. Otherwise,
separate regressions are required. The Chow test is used to determine
whether the subsamples are really necessary in light of the data you have.
To determine whether the regressions were actually equal to one another
compute

SSEfull - (SSEsouth + SSEnonsouth)/5
(SSEsouth + SSEnonsouth)/(n - 10)

Chow = ~ F5’n,10 (78)

if the two subset regressions are equivalent. You will reject the null hypoth-
esis that the coeflicients of the two subsamples are equal if the p-value is
less than the desired significance level of the test, a.

The script to compute the Chow test is:

ols wage const educ black female b_female

scalar sse_r = $ess

scalar sse_u = sse_ns+sse_s

scalar chowtest = ((sse_r-sse_u)/5)/(sse_u/($nobs-10)
pvalue F 5 $nobs-10 chowtest

As you can see, this is just an application of the F-statistic of equation
(6.2) discussed in Chapter 6. The unrestricted sum of squares is obtained
by adding the sum of squared errors of the two subset regressions. The
restricted sum of square errors is from the pooled regression.
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Table 7.3: Regression results for the Chow test.

Dependent variable: wage

Model 7
Non-South
const —3.578**
(1.211)
educ 1.166**
(0.08665)
black —0.4312
(1.418)
female —2.754**
(0.4476)
b_female 0.06732
(2.004)
n 685
R? 0.2486
SSE 22031.3

Model 8

South

—2.275
(1.555)

0.9741**
(0.1143)

—2.176**
(1.080)
—1.842**
(0.5896)
0.6102
(1.433)
315

0.2143
6981.39

Model 9
All

—3.230**
(0.9675)

1.117**
(0.06971)

—1.831**
(0.8957)
—2.552**
(0.3597)

0.5879
(1.217)

1000
0.2451
29307.7

Standard errors in parentheses

* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The results of the test are:

? scalar chowtest = ((sse_r-sse_u)/5)/(sse_u/($nobs-10)

Generated scalar chowtest (ID 20) = 2.01321

? pvalue F 5 $nobs-10 chowtest

F(5, 990): area to the right of 2.01321

(to the left: 0.925621)

0.074379
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7.3.4 Pizza Example

The pizza examples considers the model

piz; = B + Peage; + B3y; + Baage; * y; + €; (7.9)

where ¢ = 1,2,...,T. The marginal effects of age on pizza demand are
computed for families having $25,000 and $90,000 in income. The gretl
code to estimate this model using least squares and to obtain the marginal
effects is:

open c:\userdata\gretl\data\poe\pizza.gdt
ols piz const age y

genr age_inc = agexy
ols piz const age y age_inc

$coeff (age)+$coeff (age_inc)*25000
$coeff (age)+$coeff (age_inc)*90000

scalar p25
scalar p90

The estimates from the first equation are:

piz = 342.885 + 0.00238222y — 7.57556 age
(4.740) (3.947) (—3.270)

T =40 R?>=0.2930 F(2,37)=9.0811 & =131.07

(t-statistics in parentheses)
and those from the second:

piz = 342.885 + 0.00238222y — 7.57556 age
(4.740) (3.947) (—3.270)

T=40 R?>=02930 F(2,37)=09.0811 & =131.07

(t-statistics in parentheses)

and the computed predictions are:

-6.98270
-17.3964

p25
po0
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7.3.5 Log-Linear Wages Example

In the final example a model of log-wages is estimated and the genr
command is used to compute the percentage difference between male and
female wages and the marginal effect of another year of experience on the
log-wage.

open c:\userdata\gretl\data\poe\cps_small.gdt
genr 1_wage = log(wage)

ols 1_wage const educ female

scalar pdiff = exp($coeff(female))-1

genr expersq = experx*exper

genr educ_exp = educ*exper

ols 1_wage const educ exper educ_exper

scalar me = 100*($coeff (exper)+$coeff (educ_exp)*16)
ols 1l_wage const educ exper expersq educ_exper

The results from the three regressions appear in Table 7.5.

7.4 Script

open c:\userdata\gretl\data\poe\cps_small.gdt
genr exper2 = exper 2
ols wage const educ exper exper?

scalar mel8 = $coeff (exper)+2*x$coeff (exper2)*18
scalar turnpt = -($coeff (exper))/(2x$coeff (exper2))

open c:\userdata\gretl\data\poe\utown.gdt

genr p = price/1000

genr sqft_ut = sqft*utown

ols price const utown sqft sqft_ut age pool fplace

open c:\userdata\gretl\data\poe\cps_small.gdt
genr b_female = black*female
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Table 7.5: The regression results from the log-linear wages example.

const

educ

female

exper

educ_exp

expersq

OLS estimates

Dependent variable: In(wage)

Model 1 Model 2
0.9290** 0.1528
(0.08375) (0.1722)
0.1026** 0.1341**
(0.006075) (0.01271)
—0.2526**
(0.02998)
0.02492**
(0.007075)
—0.0009624*
(0.0005404)
1000 1000
0.2654 0.2785
—670.50 —660.97

Model 3

—0.2646
(0.1808)

0.1506**
(0.01272)

0.06706**
(0.009533)

—0.002019**
(0.0005545)

—0.0006962**
(0.0001081)

1000
0.3067
—640.54

Standard errors in parentheses

* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

? scalar pdiff =

exp($coeff (female))-1
Generated scalar pdiff (ID 11) = -0.223224

? scalar me = 100*($coeff (exper)+$coeff (educ_exp)*16)
Generated scalar me (ID 14) = 0.951838
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ols wage const educ black female b_female
omit black female b_female

ols wage const educ black female b_female south midwest west
omit south midwest west

genr ed_south = educ*south
genr b_south = black*south
genr f_south = female*south
genr b_f_sth = black*female*south

#Use omit statement to test joint hypothesis

ols wage const educ black female b_female south \
ed_south b_south f_south b_f_sth

omit south ed_south b_south f_south b_f_sth

#Using wls to omit observations

genr nonsouth = 1-south

wls nonsouth wage const educ black female b_female
scalar sse_ns = $ess

wls south wage const educ black female b_female
scalar sse_s = $ess

#Chow test

#Pooled regression (restricted)

ols wage const educ black female b_female

scalar sse_r = $ess

scalar sse_u = sse_ns+sse_s

scalar chowtest = ((sse_r-sse_u)/5)/(sse_u/($nobs-10)
pvalue F 5 $nobs-10 chowtest

#Pizza Example
open c:\userdata\gretl\data\poe\pizza.gdt
ols piz const age y

genr age_inc = agexy
ols piz const age y age_inc

scalar p25 = $coeff (age)+$coeff (age_inc)*25000
scalar p90 = $coeff (age)+$coeff (age_inc)*90000



CHAPTER 7. NONLINEAR RELATIONSHIPS 124

#Log wages example

open c:\userdata\gretl\data\poe\cps_small.gdt
genr 1_wage = log(wage)

ols 1_wage const educ female

scalar pdiff = exp($coeff (female))-1

genr expersq = exper*exper

genr educ_exp = educ*exper

ols 1_wage const educ exper educ_exper

scalar me = 100*($coeff (exper)+$coeff (educ_exp)*16)



Chapter

Heteroskedasticity

The simple linear regression models of Chapter 2 and the multiple re-
gression model in Chapter 5 can be generalized in other ways. For instance,
there is no guarantee that the random variables of these models (either the
y; or the e;) have the same inherent variability. That is to say, some obser-
vations may have a larger or smaller variance than others. This describes
the condition known as heteroskedasticity. The general linear regression
model is shown in equation (8.1) below.

Yi =01+ Paxio + ...+ Brxix +e; 1=1,2,...,T (8.1)

where y; is the dependent variable, x;; is the ith observation on the k' in-
dependent variable, k = 2,3,..., K, e¢; is random error, and f1, (o, ..., Ok
are the parameters you want to estimate. Just as in the simple linear re-
gression model, e;, have an average value of zero for each value of the in-
dependent variables and are uncorrelated with one another. The difference
in this model is that the variance of e; now depends on %, i.e., the observa-
tion to which it belongs. Indexing the variance with the ¢ subscript is just
a way of indicating that observations may have different amounts of vari-
ability associated with them. The error assumptions can be summarized as
eilTio, i3, . . . xix iid N (O, Uf).

The intercept and slopes, 81 and fs...0k, are consistently estimated
by least squares even if the data are heteroskedastic. Unfortunately, the
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usual estimators of the least squares standard errors and tests based on
them are inconsistent and invalid. In this chapter, several ways to detect
heteroskedasticity are considered. Also, statistically valid ways of estimating
the parameters of 8.1 and testing hypotheses about the #s when the data
are heteroskedastic are explored.

8.1 Food Expenditure Example

First, a simple model of food expenditures is estimated using least squares.
The model is
Yi=p1+ Pexi+e i=1,2,...,N. (8.2)

where y; is food expenditure and z; is income of the it" individual. When
the errors of the model are heteroskedastic, then the least squares estimator
of the coefficients is consistent. That means that the least squares point
estimates of the intercept and slope are useful. However, when the errors
are heteroskedastic the usual least squares standard errors are inconsis-
tent and therefor should not be used to form confidence intervals or to test
hypotheses.

To use least squares estimates with heteroskedastic data, at a very min-
imum, you’ll need a consistent estimator of their standard errors in order to
construct valid tests and intervals. A simple computation proposed by White
accomplishes this. Standard errors computed using White’s technique are
loosely referred to as robust, though one has to be careful when using this
term; the standard errors are robust to the presence of heteroskedasticity in
the errors of model (but not necessarily other forms of model misspecifica-
tion).

Open the food.gdt data in gretl and estimate the model using least
squares.

open c:\userdata\gretl\data\poe\food.gdt
ols y const x

This yields the usual least squares estimates of the parameters, but the
wrong standard errors when the data are heteroskedastic. To obtain the
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robust standard errors, simply add the —-robust option to the regression
as shown in the following gretl script. After issuing the --robust option,
the standard errors stored in $stderr(x) are the robust ones.

ols y const x --robust

# confidence intervals (Robust)

genr 1lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)
genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)
print 1b ub

In the script, we've used the critical(t,$df,0.025) function to get the
desired critical value from the t-distribution. Remember, the degrees of
freedom from the preceding regression are stored in $df. The first argument
in the function indicates the desired distribution, and the last is the desired
right-tail probability (/2 in this case).

This can also be done from the pull-down menus. Select Model>0rdinary
Least Squares (see Figure 2.6) to generate the dialog to specify the model
shown in Figure 8.1 below. Note, the check box to generate ‘robust standard
errors’ is highlighted in yellow. You will also notice that there is a button
labeled ‘configure’ just to the right of the check box. Clicking this button
reveals a dialog from which several options can be selected. In this case, we
can select the particular method that will be used to compute the robust
standard errors and even set robust standard errors to be the default com-
putation for least squares. This dialog box is shown in Figure 8.2 below. To
reproduce the results in Hill et al. (2008), youll want to select HC1 from
the pull-down list. As you can see, other gretl options can be selected here
that affect the default behavior of the program.

The model results for the food expenditure example appears in the
table below. After estimating the model using the dialog, you can use
Analysis>Confidence intervals for coefficients to generate 95% con-
fidence intervals. Since you used the robust option in the dialog, these will
be based on the variant of White’s standard errors chosen using the ‘config-
ure’ button. The result is:

t(38, .025) = 2.024
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Figure 8.1: Check the box for heteroskedasticity robust standard errors.
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Figure 8.2: Set the method for computing robust standard errors.
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Table 8.1: Least squares estimates with the usual and robust standard errors.

OLS estimates
Dependent variable: y

Usual Std errors Robust Std errors

const 83.42* 83.42**
(43.41) (27.46)
X 10.21** 10.21**
(2.093) (1.809)
n 40 40
R2 0.3850 0.3850
¢ —235.51 —9235.51

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level
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VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL
const 83.4160 (27.8186, 139.013)
X 10.2096 (6.54736, 13.8719)

8.2 Weighted Least Squares

If you know something about the structure of the heteroskedasticity,
you may be able to get more precise estimates using a generalization of least
squares. In heteroskedastic models, observations that are observed with
high variance don’t contain as much information about the location of the
regression line as those observations having low variance. The basic idea of
generalized least squares in this context is to reweigh the data so that all the
observations contain the same level of information (i.e., same variance) about
the location of the regression line. So, observations that contain more noise
are given small weights and those containing more signal a higher weight.
Reweighing the data in this way is known in some statistical disciplines as
weighted least squares. This descriptive term is the one used by gretl as
well.

Suppose that the errors vary proportionally with x; according to
Var(e;) = o’ (8.3)

The errors are heteroskedastic since each error will have a different vari-
ance, the value of which depends on the level of x;. Weighted least squares
reweighs the observations in the model so that each transformed observation
has the same variance as all the others. Simple algebra reveals that

1

T

Var(e;) = o (8.4)

So, multiply equation (8.1) by 1/,/z; to complete the transformation. The
transformed model is homoskedastic and least squares and the least squares
standard errors are statistically valid and efficient.

Gretl makes this easy since it contains a function to reweigh all the
observations according to a weight you specify. The command is wls, which
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naturally stands for weighted least squares! The only thing you need to be
careful of is how gretl handles the weights. Gretl takes the square root of
the value you provide. That is, to reweigh the variables using 1/,/z; you
need to use its square 1/z; as the weight. Gretl takes the square root of
w for you. To me, this is a bit confusing, so you may want to verify what
gretl is doing by manually transforming y, x, and the constant and running
the regression. The script file shown below does this.

In the example, you first have to create the weight, then call the function
wls. The script appears below.

open c:\userdata\gretl\data\poe\food.gdt

#GLS using built in function
genr w = 1/x
wls w y const x

genr 1lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)
genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)
print 1b ub

#GLS using OLS on transformed data
genr wi = 1/sqrt(x)

genr ys = wixy

genr xs = wWi*x

genr cs = wi

ols ys cs xs

The first argument after wls is the name of the weight variable. Then,
specify the regression to which it is applied. Gretl multiplies each vari-
able (including the constant) by the square root of the given weight and
estimates the regression using least squares.

In the next block of the program, w; = 1/,/x; is created and used to
transform the dependent variable, z and the constant. Least squares re-
gression using this manually weighted data yields the same results as you
get with gretl’s wls command. In either case, you interpret the output of
weighted least squares in the usual way.
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The weighted least squares estimation yields:

y = 78.6841 + 10.4510x
(23.789)  (1.3859)

T =40 R>=0.5889 F(1,38) =56.867 & = 18.75

(standard errors in parentheses)

and the 95% confidence interval for the slope (35 is (7.64542, 13.2566).

8.3 Skedasticity Function

A commonly used model for the error variance is the multipicative
heteroskedasticity model. It appears below in equation 8.5.

0? = exp (o1 + a2z;) (8.5)

The variable z; is an independent explanatory variable that determines
how the error variance changes with each observation. You can add ad-
ditional zs if you believe that the variance is related to them (e.g., o2
exp (a1 + a2zi2 + agz;3)). It’s best to keep the number of zs relatively small.
The idea is to estimate the parameters of (8.5) using least squares and then

use predictions as weights to transform the data.

In terms of the food expenditure model, let z; = In(x;). Then, taking the
natural logarithms of both sides of (8.5) and adding a random error term,
v, yields

In (O‘?) = a1 + a9z +v; (8.6)

To estimate the as, first estimate the linear regression (8.2) (or more gen-
erally, 8.1) using least squares and save the residuals. Square the residuals,
then take the natural log; this forms an estimate of In(0?) to use as the
dependent variable in a regression. Now, add a constant and the zs to the
right-hand side of the model and estimate the as using least squares.

The regression model to estimate is

In (67) = a1 + agzi + v; (8.7)

where é? are the least squares residuals from the estimation of equation

(8.1). The predictions from this regression can then be transformed using
the exponential function to provide weights for weighted least squares.
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For the food expenditure example, the gretl code appears below.

ols y const x

genr lnsighat = log($uhat*$uhat)
genr z = log(x)

ols lnsighat const z

genr predsighat = exp($yhat)
genr w = 1/predsighat

wls w y const x

The first line estimates the linear regression using least squares. Next, a new
variable is generated (1lnsighat) that is the natural log of the squared resid-
uals from the preceding regression. Then, generate z as the natural log of
z. Estimate the skedasticity function using least squares, take the predicted
values (yhat) and use these in the exponential function (i.e., exp (g;)). The
reciprocal of these serve as weights for generalized least squares. Remember,
gretl automatically takes the square roots of w for you in the wls function.

This results in:

y = 76.0538 4+ 10.6335x
(9.7135)  (0.97151)

T =40 R>=0.7529 F(1,38)=119.8 & = 1.5467

(standard errors in parentheses)

8.4 Grouped Heteroskedasticity

Using examples from Hill et al. (2008) a model of grouped heteroskedas-
ticity is estimated and a Goldfeld-Quandt test is performed to determine
whether the two sample subsets have the same error variance.

8.4.1 Wage Example

Below, I have written a gretl program to reproduce the wage example
from Hill et al. (2008) that appears in Chapter 8. The example is relatively
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straightforward and I’ll not explain the script in much detail. It is annotated
to help you decipher what each section of the program does.

The example consists of estimating wages as a function of education and
experience. In addition, a dummy variable is included that is equal to one if
a person lives in a metropolitan area. This is an “intercept” dummy which
means that folks living in the metro areas are expected to respond similarly
to changes in education and experience (same slopes), but that they earn a
premium relative to those in rural areas (different intercept).

Each subset (metro and rural) is estimated separately using least squares
and the standard error of the regression is saved for each ($sigma). To cre-
ate weights for weighted least squares, the full sample is restored and the
metro and rural dummy variables are each multiplied times their respective
regression’s standard error. The two variables are added together to form
a single variable that is equal to the metro regression standard error for
each observation located in a metro area and equal to the rural regression
standard error for each observation located in a rural area. The weight is
created by taking the reciprocal and squaring. Recall, gretl needs the vari-
ance rather than the standard error of each observation to perform weighted
least squares.

open c:\userdata\gretl\data\poe\cps2.gdt
ols wage const educ exper metro

# Use only metro observations
smpl metro --dummy

ols wage const educ exper
scalar stdm = $sigma

#Restore the full sample
smpl full

#Create a dummy variable for rural
genr rural = l-metro

#Restrict sample to rural observations
smpl rural --dummy
ols wage const educ exper
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scalar stdr = $sigma

#Restore the full sample
smpl full

#Generate standard deviations for each metro and rural obs
genr wm = metro*stdm
genr wr

rural*stdr

#Make the weights (reciprocal)

#Remember, Gretl’s wls needs these to be variances
#so you’ll need to square them

genr w = 1/(wm + wr)~2

#Weighted least squares
wls w wage const educ exper metro

Weighted least squares estimation yields:

wage = —9.39836 + 1.19572 educ + 0.132209 exper + 1.53880 metro
(1.0197)  (0.068508) (0.014549) (0.34629)
T =1000 R?*=0.2693 F(3,996) = 123.75 & = 1.0012

(standard errors in parentheses)

The Goldfeld-Quandt statistic is the formed as the ratio of the two variances:

~2
o
_ "M
F= 52 NFNM—KM,NR—KR (8-8)
R

if the null hypothesis of homoskedasticity is true. Rejection of the Ho means
that the subsets have different variances.

#Goldfeld Quandt statistic
?scalar fstatistic = stdm~2/stdr"2
Generated scalar fstatistic (ID 17) = 2.08776

You could simplify the script a bit by using the regression trick explored
in Chapter 7. Create a dummy variable that takes the value of 1 for the
desired observations and 0 for the ones you want to drop. Then, use weighted



CHAPTER 8. HETEROSKEDASTICITY 137

least squares on the entire sample using the dummy variable as your weight.
This effectively drops all observations in the sample for which the dummy
variable is zero. This trick is useful since it keeps you from having to keep
explicit track of which sample is actually in memory at any point in time.
Thus,

smpl metro —-dummy
ols wage const educ exper

could be replaced by

wls metro wage const educ exper

Then there is no need to restore the full sample in the next block of codel!

8.4.2 Food Expenditure Example

In this example, the Goldfeld-Quandt test is applied in a more traditional
way. Here, you suspect that the variance depends on a specific variable. You
sort the data based on this variable and then compare the subset variances
to one another using the Goldfeld-Quandt test statistic.

For the food expenditure example, the script follows. Essentially, you
want to run two regressions using subsets of the sample. One subset contains
observations with low variance, the other observations with high variance.
In most cases this means that you’ll have to sort your data based on its
variability. In our example, one would sort the data based on x;. Gretl
gives us another option and that is to create the subsamples based on some
criterion. In this case, we want observations separated based on high and low
values of z so we can use the median function. To pick all observations for
which z is above the median, use smpl x > median(x) --restrict. Recall
that the smpl command allows us to manipulate the sample in memory. In
this case we use the logical statement that we want observations where x
is greater than the median of x, followed by the --restrict option. This
should give us half the observations.
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open c:\userdata\gretl\data\poe\food.gdt

#Take subsample where x > median(x)
smpl x > median(x) --restrict

ols y const x
scalar stdL
scalar df_L

$sigma
$df

#Restore the full sample
smpl full

#Take subsample where x < median(x)
smpl x < median(x) --restrict

ols y const x

scalar stdS
scalar df_S

$sigma
$af

#Goldfeld Quandt statistic
scalar fstatistic = stdL"2/stdS"2
pvalue F df _L df_S fstatistic

The full sample is restored and the variance for the lower half is saved. Then
the test statistic is computed and can be compared to the appropriate critical
value. The last statement computes the p-value from the F-distribution.
Recall that the degrees of freedom were saved from each subset and they can
be used here as the arguments for the numerator and denominator degrees
of freedom for F.

The test statistic and p-value are:

? scalar fstatistic = stdL"2/stdS"2
Generated scalar fstatistic (ID 7) = 3.61476
? pvalue F df_L df_S fstatistic

F(18, 18): area to the right of 3.61476 = 0.00459643
(to the left: 0.995404)
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8.5 Other Tests for Heteroskedasticity

The Goldfeld-Quandt test of the null hypothesis of homoskedasticity is
only useful when the data can be neatly partitioned into subsamples having
different variances. In many circumstances this will not be the case and
other tests of the homoskedasticity null hypothesis are more useful. Each
of these tests share the same null hypothesis as the Goldfeld-Quandt test:
homoskedasticity. They differ in the specification of the alternative hypoth-
esis.

The first test considered is based on the estimated multiplicative het-
eroskedasticity function of section 8.3. The null and alternative hypotheses
are

H,: o}= o° (8.9)
Hy: o?= exp(a1+ agz) (8.10)

The homoskedastic null hypothesis is tested against a specific functional
relationship. In this case, we know the function (exponential) as well as
the variable(s) that causes the variance to vary (z;). Basically, we want to
test whether g = 0. If it is, then the errors of the regression model are
homoskedastic.

The test of this hypothesis is based on your regression in equation (8.7).
The t-ratio on a9 is approximately normally distributed under Ho so you
could use the t-test to test this proposition. If you have multiple zs, use the
F-test.

Other equivalent ways of testing this hypothesis are available. As Hill
et al. (2008) point out, it is common to test the same hypothesis based on
a linear regression

&2 = oy + a2 + i (8.11)

Breusch and Pagan have proposed a couple of tests of the homoskedasticity
hypothesis (8.9) against the alternative

H : 01'2 = h(a1 + O[QZZ‘) (8.12)

where h() is some arbitrary function (e.g., linear or exponential). These
tests are carried out based on equation (8.11). The alternative hypothesis
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in (8.12) is more general than that in (8.10) and includes it as a special
case. There are two versions of the Breusch-Pagan test. One is used when
the errors of the regression are normally distributed and the other when they
are not. I suggest using the latter since it is seldom if ever known what the
error distribution is. I'll tell you how to do the preferred version in gretl.

Basically, estimate (8.11) using least squares and take NR? from this
regression, where N is your sample size. Under the null hypothesis it has
a ngl distribution, where S is the total number of parameters (the as) in
the estimated equation.

The alternative hypothesis of White’s test is even more general than the
Breusch-Pagan. The alternative hypothesis is

Hi : 0} # o? (8.13)

Thus the alternative is completely general. The test is similar to the Breusch-
Pagan test in that you’ll run a regression with é as a dependent variable
and zs as the independent variables. In White’s test you will include each
z, its square, and their (unique) cross products as regressors. In the food
expenditure example that amounts to

Yi = a1 + oz + a2l + v (8.14)

You can do this in one of two ways. You can run the original regression,
save the residuals and square them. Then square z; to use as an independent
variable. Run the regression. For the food expenditure example:

open c:\userdata\gretl\data\poe\food.gdt
ols y const x

#Save the residuals
genr ehat = $uhat

#Square the residuals
genr ehat2 = ehat*ehat

#White’s test
#Generate squares, cross products (if needed)
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genr x2 = x*X

#Test regression

ols ehat2 const x x2
scalar teststat = $trsq
pvalue X 2 teststat

Gretl computes N R? in every regression and saves it in $trsq. The statistic
NR? is distributed as a X%—l under the null hypothesis of homoskedasticity
and we can use the pvalue function to obtain the p-value for the computed
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statistic. The syntax is pvalue X df statistic, with X indicating the x?2,

df the degrees of freedom, and statistic the computed value of NR?. The

script yields a computed test statistic of 7.555, and the p-value of 0.0228789.

Homoskedasticity is rejected.

Or, you can use the gretl function lmtest! In this case, run the original

regression and follow it with 1mtest --white as shown in the script.

open c:\userdata\gretl\data\poe\food.gdt

#White’s test —--built-in
ols y const x
Imtest —--white

This yields the output:

White’s test for heteroskedasticity

OLS estimates using the 40 observations 1-40

Dependent variable: uhat~™2

VARIABLE COEFFICIENT
const -2908.78
X 291.746
sq_X 11.1653

Unadjusted R-squared = 0.188877

T STAT

-0.359
0.319
0.441

P-VALUE

0.72156
0.75186
0.66167
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Test statistic: TR™2 = 7.555079,
with p-value = P(Chi-square(2) > 7.555079) = 0.022879

As you can see, the results from lmtest --white and your (labor intensive)
script are the same!

8.6 Script

open c:\userdata\gretl\data\poe\food.gdt
ols y const x
ols y const x --robust

# confidence intervals (Robust)
genr 1lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)

genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)
print 1b ub

#GLS using built in function

genr w = 1/x

wls w y const x

genr 1lb = $coeff(x) - critical(t,$df,0.025) * $stderr(x)
genr ub = $coeff(x) + critical(t,$df,0.025) * $stderr(x)
print 1b ub

#GLS using OLS on transformed data

genr wi = 1/sqrt(x)
genr ys = wixy
genr xs = wWi*x
genr cs = wi

ols ys cs xs

#Estimating the skedasticity function and GLS
ols y const x
genr lnsighat = log($uhat*$uhat)
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genr z = log(x)

ols lnsighat const z

genr predsighat = exp($yhat)
genr w = 1/predsighat

wls w y const x

#Wage Example

open c:\userdata\gretl\data\poe\cps2.gdt

ols wage const educ exper metro

# Use only metro observations
smpl metro —-dummy

ols wage const educ exper
scalar stdm = $sigma

#Restore the full sample
smpl full

#Create a dummy variable for rural
genr rural = l-metro

#Restrict sample to rural observations

smpl rural —--dummy
ols wage const educ exper
scalar stdr = $sigma

#Restore the full sample
smpl full

#Generate standard deviations for each metro and rural obs

genr wm = metro*stdm
genr wr = rural*stdr

#Make the weights (reciprocal)

#Remember, Gretl’s wls needs these to be variances

#so you’ll need to square them
genr w = 1/(wm + wr)~2

143
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#Weighted least squares
wls w wage const educ exper metro

#Goldfeld Quandt statistic

scalar fstatistic = stdm”~2/stdr"2

#Food Expenditure Example
open c:\userdata\gretl\data\poe\food.gdt

#Take subsample where x > median(x)
smpl x > median(x) --restrict

ols y const x
scalar stdL = $sigma
scalar df_L = $df

#Restore the full sample
smpl full

#Take subsample where x < median(x)
smpl x < median(x) --restrict

ols y const x
scalar stdS = $sigma
scalar df_S = $df

#Goldfeld Quandt statistic
scalar fstatistic = stdL"2/stdS"2
pvalue F df_L df_S fstatistic

#LM Test
open c:\userdata\gretl\data\poe\food.gdt
ols y const x

#Save the residuals
genr ehat = $uhat
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#Square the residuals
genr ehat2 = ehat*ehat

#White’s test
#Generate squares, cross products (if needed)
genr x2 = x*X

#Test regression

ols ehat2 const x x2
scalar teststat = $trsq
pvalue X 2 teststat

#White’s test
open c:\userdata\gretl\data\poe\food.gdt

#White’s test --built-in
ols y const x
Imtest --white



Chapter

Dynamic Models and
Autocorrelation

The multiple linear regression model of equation (5.1) assumes that the
observations are not correlated with one another. While this is certainly
believable if one has drawn a random sample, it’s less likely if one has drawn
observations sequentially in time. Time series observations, which are drawn
at regular intervals, usually embody a structure where time is an important
component. If you are unable to completely model this structure in the
regression function itself, then the remainder spills over into the unobserved
component of the statistical model (its error) and this causes the errors be
correlated with one another.

One way to think about it is that the errors will be serially correlated
when omitted effects last more than one time period. This means that when
the effects of an economic ‘shock’ last more than a single time period, the
unmodelled components (errors) will be correlated with one another. A
natural consequence of this is that the more frequently a process is sampled
(other things being equal), the more likely it is to be autocorrelated. From
a practical standpoint, monthly observations are more likely to be autocor-
related than quarterly observations, and quarterly more likely than yearly
ones. Once again, ignoring this correlation makes least squares inefficient at
best and the usual measures of precision (standard errors) inconsistent.

146
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In this chapter, several ways to detect autocorrelation in the model’s
errors are considered. Also, statistically valid ways of estimating the param-
eters of 8.1 and testing hypotheses about the s in autocorrelated models
are explored.

9.1 Area Response Model for Sugar Cane

Hill et al. (2008) considers a simple model of the area devoted to sugar
cane production in Bangladesh. The equation to be estimated is

In(A;) = 1+ BoIn (Pr) + e t=1,2,...,N (9.1)

The data consist of 34 annual observations on area (A) and price (P). The
error term contains all of the economic factors other than price that affect
the area of production. If changes in any of these other factors (shocks) affect
area for more than one year, then the errors of the model will not be mutually
independent of one another. The errors are said to be serially correlated or
autocorrelated. Least square estimates of the (s are consistent, but the
usual computation for the standard errors is not.

If the shock persists for two periods, and the shock is stable in the sense
that its influence on the future diminishes as time passes, then we could use
a model such as

er = per_1 + vt (9.2)

where p is a parameter and v; is random error. This says that today’s shock
is in part due to the shock that happened in the previous period. Thus,
there is some persistence in the area under tillage that is unrelated to price.
The model referred to in equation 9.2 is called first order autocorrelation
and is abbreviated AR(1).

Stability means that the parameter p must lie in the (-1,1) interval (not
including the endpoints). If |p| is one or greater then the errors are not
stable and a shock will send your model spiraling out of control!

As is the case with heteroskedastic errors, there is a way to salvage least
squares when your data are autocorrelated. In this case you can use an
estimator of standard errors that is robust to both heteroskedasticity and
autocorrelation proposed by Newey and West. This estimator is sometimes
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called HAC, which stands for heteroskedasticity autocorrelated con-
sistent. This and some issues that surround its use are discussed in the
next few sections.

9.1.1 Bandwidth and Kernel

HAC is not quite as automatic as the heteroskedasticity consistent (HC)
estimator in Chapter 8. To be robust with respect to autocorrelation you
have to specify how far away in time the autocorrelation is likely to be sig-
nificant. Essentially, the autocorrelated errors over the chosen time window
are averaged in the computation of the HAC standard errors; you have to
specify how many periods over which to average and how much weight to
assign each residual in that average. The language of time series analysis
can often be opaque. This is the case here. The weighted average is called a
kernel and the number of errors to average in this respect is called band-
width. Just think of the kernel as another name for weighted average and
bandwidth as the term for number of terms to average.

Now, what this has to do with gretl is fairly simple. You get to pick a
method of averaging (Bartlett kernel or Parzen kernel) and a bandwidth
(nwl, nw2 or some integer). Gretl defaults to the Bartlett kernel and
the bandwidth nwl = 0.75zNY3. As you can see, the bandwidth nwi is
computed based on the sample size, N. The nw2 bandwidth is nw2 =
4 x (N/100)%/%. This one appears to be the default in other programs like
EViews.

Implicity there is a trade-off to consider. Larger bandwidths reduce bias
(good) as well as precision (bad). Smaller bandwidths exclude more relevant
autocorrelations (and hence have more bias), but use more observations to
increase precision (smaller variance). The general principle is to choose a
bandwidth that is large enough to contain the largest autocorrelations. The
choice will ultimately depend on the frequency of observation and the length
of time it takes for your system to adjust to shocks.

The bandwidth or kernel can be changed using the set command from
the console or in a script. The set command is used to change various
defaults in gretl and the relevant switches for our use are hac_lag and
hac_kernel. The use of these is demonstrated below. The following script
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could be used to change the kernel to bartlett and the bandwidth to nw2:

open c:\userdata\gretl\data\poe\bangla.gdt
set hac_kernel bartlett
set hac_lag nw2

9.1.2 Dataset Structure

The other key to using HAC is that your data must be structured as a
time series. This can be done through the dialogs or very simply using the
console. First let’s look at the Dataset wizard provided in the system of
menus.

Open the bangla.gdt data and choose Data>Data set structure from
the main pull-down menu (refer to Figure 7.2). This brings up the Data
structure wizard dialog box (Figure 7.3). Choose Time series and
click Forward. Although the data were collected annually, no actual dates
(years) are provided. So in the next box (top of Figure 9.1) choose other
and click Forward. This leads to the second box in the figure. Start the ob-
servations at 1, click Forward again, and a window confirming your choices
(shown at the bottom) will open. If satisfied, click OK to close the wizard
or Back to make changes. If you had chosen annual, quarterly, monthly or
other actual time frame in the first of the wizard’s boxes, then you would
be given the opportunity to select actual dates in the second box. Again,
your choices are confirmed in the final box generated by the wizard.

Gretl includes the setobs command that will do the same thing. For
bangla.gdt dataset the command is

setobs 1 1 —--time-series

The first number identifies the periodicity (1=year, 4=quarter, 12=month,
and so on). The second number sets the starting date. Since there is no date
for this data we start the time counter at 1. Finally, the ——time-series
option is used to declare the data to be time-series. Here are a few other
examples:
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Figure 9.1: Choose Data>Dataset structure from the main window. This
starts the Dataset wizard, a series of dialogs that allow you to specify the

periodicity and dates associated with your data.
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setobs 4 1978:3 --time-series
setobs 12 1950:01 --time-series
setobs 1 1949 --time-series

The first statement starts a quarterly series in the third quarter of 1978, the
second a monthly series beginning in January 1950, and the last a yearly
series beginning in 1949. See the help on setobs to declare daily or hourly
series, or to setup your data as a cross-section or panel.

9.1.3 HAC Standard Errors

Once gretl recognizes that your data are time series, then the robust
command will automatically apply the HAC estimator of standard errors
with the default values of the kernel and bandwidth (or the ones you have
set with the set command). Thus, to obtain the HAC standard errors
simply requires

open c:\userdata\gretl\data\poe\bangla.gdt
logs p a
ols 1_p const 1_a --robust

The statement logs p a creates the natural logarithms of the variables p
and a and puts them into the dataset as 1_p and 1_a. These are used in
the regression with the --robust option to produce least squares estimates
with HAC standard errors.

The results appear below:

OLS estimates
Dependent variable: 1_a
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OLS (wrong SE) OLS with HAC

const 3.893** 3.893**
(0.06058) (0.06135)

l.p 0.7761** 0.7761**
(0.3669) (0.2775)

n 34 34

R? 0.1965 0.1965

¢ —7.15 —7.15

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Notice that the standard errors computed using HAC are a little different
from those in Hill et al. (2008). No worries, though. They are statistically
valid and suggest that EViews and gretl are doing the computations a bit
differently.

9.2 Nonlinear Least Squares

Perhaps the best way to estimate a linear model that is autocorrelated
is using nonlinear least squares. As it turns out, the nonlinear least squares
estimator only requires that the errors be stable (not necessarily station-
ary). The other methods commonly used make stronger demands on the
data, namely that the errors be covariance stationary. Furthermore, the
nonlinear least squares estimator gives you an unconditional estimate of the
autocorrelation parameter, p, and yields a simple t-test of the hypothesis
of no serial correlation. Monte Carlo studies show that it performs well in
small samples as well. So with all this going for it, why not use it?

The biggest reason is that nonlinear least squares requires more compu-
tational power than linear estimation, though this is not much of a constraint
these days. Also, in gretl it requires an extra step on your part. You have
to type in an equation for gretl to estimate. This is the way one works in
EViews and other software by default, so the burden here is relatively low.
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Nonlinear least squares (and other nonlinear estimators) use numerical
methods rather than analytical ones to find the minimum of your sum of
squared errors objective function. The routines that do this are iterative.
You give the program a good first guess as to the value of the parameters and
it evaluates the sum of squares function at this guess. The program looks at
the slope of your sum of squares function at the guess and computes a step
in the parameter space that takes you closer to a minimum (further down
the hill). If an improvement in the sum of squared errors function is found,
the new parameter values are used as the basis for another step. Iterations
continue until no further significant reduction in the sum of squared errors
function can be found.

In the context of the area response equation the AR(1) model is
In(Ay) = Bi(1 = p) + Bo(In () — pIn (Pr—1)) + pIn (A1) + v (9.3)

The errors, vs, are random and the goal is to find §1, (2, and p that minimize
Y v2. Ordinary least squares is a good place to start in this case. The OLS
estimates are consistent so we’ll start our numerical routine there, setting p
equal to zero. The gretl script to do this follows:

open c:\userdata\gretl\data\poe\bangla.gdt
logs p a
ols 1_a const 1_p --robust

genr betal = $coeff (const)
genr beta2 $coeff(1_p)
genr rho = 0

nls 1_a = betal*(l-rho) + rho*1l_a(-1) + beta2*(1_p-rho*1_p(-1))
end nls

Magically, this yields the same result from your text!

The nls command is initiated with nls followed by the equation repre-
senting the systematic portion of your model. The command is closed by the
statement end nls. In the script, I used gretl’s built in functions to take
lags. Hence, 1_a(-1) is the variable 1_a lagged by one period (-1). In this
way you can create lags or leads of various lengths in your gretl programs
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without explicitly having to create new variables via the generate command.
The results of nonlinear least squares appear below in Figure 9.2.

Figure 9.2: Nonlinear least squares results for the AR(1) regression model.
{57 gretl: script output 1Ol x|

CEDhREI

Generated scalar rho (ID 7)) =0 -:J
? nls 1 & = betal*i{l-rhoj + rho*l _ai-1) + betai* (1l _p-rho*l pi-1j

? end nls

Using numerical derivatives

Convergence achieved after 37 iterations

Tolerance = 1.515899e-012

Model 3: NLE estimates using the 33 ochserwvations 2-34
Dependent variable: 1 a

PARAMETER ESTIMATE STDERROR T 3TAT P-VALLUE
hetal 3.89877 0.05921658 42.302 <0.00001 ##*%
rho 0.422139 0.166047 Z.54z2 0.01641 #**
hetaz 0.888371 0.259298 3.426 0.00180 #*%

Mean of dependent wariable = 3.99931
SGtandard deviation of dep. wvar. = 0.325164
Sum of sguared residuals = 2.44355
Standard error of residuals = 0.255399
Unadjusted R-sgquared = 0.,277777

Akaike information criterion (AIC) = 13.7495

Schwarz Bayesian criterion (BIC) = 18.239

Hannan-Quinn criterion (HQCZ) = 15.Z26 _:J
Close

Equation 9.3 can be expanded and rewritten in the following way:

In(A;) = Bi(1—p)+Peln(P) — Pepln (Pi—1) + pln (Ai—1) + v(9.4)
In (At) = d+4ln (Pt) —611n (R&—l)) + 61 1n (At—l) + vt (95)

Both equations contain the same variables, but Equation (9.3) contains only
3 parameters while (9.5) has 4. This means that (9.3) is nested within (9.5)
and a formal hypothesis test can be performed to determine whether the
implied restriction holds. The restriction is §; = —6010p.! To test this
hypothesis using gretl you can use a variant of the statistic (6.2) discussed
in section 6.1. You’ll need the restricted and unrestricted sum of squared
errors from the models. The statistic is
(SSE, — SSE,) . 4

JXF = SSEU/(N — K) ~XJ if HO : (51 = —9150 is true (96)

16 =p1(1—p),60 = B2,61 = —pP2, 6L = p
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Since J = 1 this statistic has an approximate X% distribution and it is equiv-
alent to an F test. Note, you will get a slightly different answer that the one
listed in your text. However, rest assured that the statistic is asymptotically
valid.

For the example, we’ve generated the output:

Replaced scalar fstat (ID 12) = 1.10547
? pvalue X 1 fstat

Chi-square(l): area to the right of 1.10547 = 0.293069
(to the left: 0.706931)
? pvalue F 1 $df fstat

F(1, 29): area to the right of 1.10547 = 0.301752
(to the left: 0.698248)

Because the sample is so small (only 29 degrees of freedom) the p-values
from the F(1,29) and the x? are a bit different. Still, neither is significant
at the 5% level.

9.3 Testing for Autocorrelation

Two methods are used to determine the presence or extent of autocor-
relation. The first is to take a look at the residual correlogram. A
correlogram is a graph that plots series of correlations between #; and &;_;
against the time interval between the observations, j = 1,2,...,m. A resid-
ual correlogram uses residuals from an estimated model as the time series,
x¢. So, the first thing to do is to estimate the model using least squares
and then save the residuals, é;. Once you have the residuals, then use the
corrgm command to get the correlogram. The syntax follows:

open c:\userdata\gretl\data\poe\bangla.gdt
logs p a
ols 1_a const 1_p --robust
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genr ehat = $uhat
corrgm ehat 12

The output is found in Figure 9.3 below. Essentially, the 12 autocorrelations

Figure 9.3: Correlogram of the least squares residuals
& gretl: script output =10]x]

BaamRB S x

=
Correlogram

ehat
0.394503 |o
|

|
0.267226 4+
|
|
|
| o a
0.0545962  + ]
0.0 |
| a
|
| o a
-0.158033 + ] ]
|
|
| =]
| =]
-0.370662 + ]
| + } } }
1 lag 1z

hbutocorrelation function for ehat

LAG ACF PACF Q-stat. [p-value]
1 0.3945 ** 0.3945 #*+* 5.7813 [0.016]
Z 0.1173 -0.0457 6.3075 [0.043]
3 o.0s02 0.0800 6.5660 [0.087]
4 -0.3195 * —-0.43595 ** 10.73587 [0.030]
5 -0.3707 %% -0.1123 16.5376 [0.005]
& -0.1380 0.0825 17.3699 [0.008]
7 -0.zZ650 -0.2136 Z0.5546 [0.004]
g8 -0.1444 -0.0413 21.5363 [O.006]
9 0.1111 0.0z254 Z2.1408 [0.005]
i0 0.0106 —0.a777? Z2.1465 [0.014]
11 -0.0853 -0.2561 ZZ.5612 [O.020]
1z -0.08582 -0.2577 Z2.9942 [0.025]

B

Close |

plotted are simple correlations between é; and é;_,, for m = 1,2,...,12.
Statistical significance at the 5% level is denoted with two asterisks (**) and
at the 10% level with one (*). The correlogram is just a way of visualizing
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this, as it plots each of the autocorrelations against its lag number.

The dialogs yields a much prettier and marginally more informative re-
sult. Estimate the model using Model>0Ordinary Least Squares as shown
in Figures 5.1 and 5.2. Click OK to run the regression and the results ap-
pear in a model window. Then select Graphs>Residual plot>Correlogram
from the pull-down menus as shown in Figure 9.4. Select the number of lags

Figure 9.4: From the model window you can obtain the correlogram of the

least squares residuals with Graph>Residual plot>Correlogram.

“4. gretl: model 6

=10l x|

File Edit Analysis  LaTex

Tests  Save

Residual plot

¥ | Correlogram

-

Speckrum
Against Eirme:
Against |_a
Against |_p

Model 6: OLS estif Fitted, actual plot
Dependent wvarisble: l_a

Hons 1-34

VARILELE COEFFICIENT FLEOE T 3TAT P-VALUE

3.893zZ6
0.776119

0.0613451
0.277467

63.465
Z.797

<0.00001 ##*%
0.00565 *#%*%

const
1 p

Mean of dependent wariahle = 3.,93065

SGtandard dewviation of dep. war. = 0.3358123
Sum of sguared residuals = 3.03157
Standard error of residuals =
Unadjusted R-sguared = 0.196466
Adjusted R-sguared = 0.171355
Degrees of freedom = 32
Durbin-Watson statistic = 1.165599
First-order autocorrelation coeff.
Log-likelihood = -7.15016
[Log—-likelihood for a = -142.493)
Akaike information criterion (AIC)
Schwarz Bayesian criterion (BIC) =

0.307793

= 0.399241

= 18.3003
21.353

Close

to include using the dialog box (Figure 9.5). Click OK and gretl opens

Figure 9.5: Choose the desired number of lags using the dialog box.

=101 x|

% gretl: correlogram

Madimum lag; ||12 @

P ox

HE|D | XM Cancel

two windows containing results. The first contains the table shown at the
bottom half of Figure 9.3, which shows the computed sample autocorrela-
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tions (ACF) and partial autocorrelations (PACF). The other is a graph of
these along with 95% confidence bands. This graph is depicted in Figure
9.6 below. You can see that the first and fifth autocorrelations lie outside of

Figure 9.6: This version of the correlogram is much prettier and includes

confidence bands for the autocorrelations.
"; gretl: gnuplot graph - |EI|£|

Residual ACF

1f j j j j - 196T0.5 —— 1

05|
-1 C 1 1 1 1 1 1
0 2 4 13 &8 10 12
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Residual PACF
1f j j j j - 196T0.5 —— 1
05 b

-05

|Click on graph for pop-up menu

the confidence band, indicating that they are individually significant at the
5% level.

The other way to determine whether or not your residuals are autocor-
related is to use an LM (Lagrange multiplier) test. For autocorrelation, this
test is based on an auxiliary regression where lagged least squares residu-
als are added to the original regression equation. If the coefficient on the
lagged residual is significant then you conclude that the model is autocor-
related. So, for a regression model y; = 81 + Boxt + e; the first step is to
estimate the parameters using least squares and save the residuals, é;. An
auxiliary regression model is formed using é; as the dependent variable and
original regressors and the lagged value é;_1 as an independent variables.
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The resulting auxiliary regression is
ét - 51 + ﬁg.ﬁt + ,Oét_l + UV (97)

Now, test the hypothesis p = 0 against the alternative that p # 0 and you
are done. The test statistic is NR? from this regression which will have a
x? if Ho: is true. The script to accomplish this is:

ols ehat const 1_p ehat(-1)
scalar NR2 = $trsq
pvalue X 1 NR2

If you prefer to use the dialogs, then estimate the model using least square in

the usual way (Model>Ordinary least squares)and select Tests>Autocorrelation
from the resulting model window (i.e., the one in Figure 9.4). Choose the

number of lagged values of é; you want to include in (9.7) (in our case only

1) and click OK. This will give you the same result as the script. The re-

sult appears in Figure 9.7. Note, the first statistic reported is simply the

joint test that all the lagged values of é you included in (9.7) are jointly

zeros. The second one is the NR? version of the test done in the script.

Gretl also computes a Ljung-Box Q statistic whose null hypothesis is no
autocorrelation. It is also insignificant at the 5% level.

9.4 Autoregressive Models and Forecasting

A autoregressive model will include one or more lags of your dependent
variable on the right-hand-side of your regression equation. An AR(p) in-
cludes p lags of y; as shown below in equation (9.8).

Ye =0+ Or1ys—1 + O2ys—2 + ... + Opys—p + vy (9.8)

In general, p should be large enough so that v; is white noise.

The dataset inflation.gdt includes 270 monthly observations on the CPI
from which an inflation variable is computed. To estimate an AR(3) model
of inflation, simply use the script
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Figure 9.7: Using Test>Autocorrelation from the model pull-down menu

will generate the following output.
“4. gretl: LM test {autocorrelation} - |EI|1|

BaeBm@R x

Breusch-Godfrey test for first-order autocorrelation
OL3 estimates using the 33 obserwvations 2-34
Dependent wvarisble: uhat

VARILELE COEFFICIENT STDERROR T 3TAT P-VALUE
const 0.013z9z1 0.06058353 0.z15 0.525852
lp -0.0151610 0.z280749 -0.054 0.957z8
uhat_1 0.395553 0.167309 Z.382 0.02375 *%

Unadjusted R-sguared = 0.163295
Test statistic: LMF = 5.8549:22,
with p-value = P{F{1,30) > 5.854592) = 0.0z18

Alternative statistic: TRZ = 5.388728,
with p-walue = P(Chi-sguare(l) > 5.38873) = 0.0203

Lijung-Box Q' = 5.75134 with p-wvalue = P(Chi-square(l) > 5.75134) = 0.0162

Close

open C:\userdata\gretl\data\poe\inflation.gdt
ols infln const infln(-1 to -3)

In this case a bit of shorthand is used to generate the lagged values of
inflation to include as regressors. The syntax infln(-1 to -3) tells gretl
to include a range of the variable inflation from lags from 1 to 3. The minus
signs indicate lags. This is equivalent to using a list of variables as in

ols infln const infln(-1) infln(-2) infln(-3)

Obviously, if p were large then using the range version would save a lot of
typing.

Using this model to forecast in gretl is very simple. The main decision
you have to make at this point is how many periods into the future you
want to forecast. In gretl you have to extend the sample to include future
periods under study.
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9.4.1 Using the Dialogs

Return to the main gretl window and choose Model>0Ordinary least
squares. This will bring up the ‘specify model’ dialog box. Choose infln
as the dependent variable as shown.

Since your data are defined as time series (recall, you did this through
Data>Dataset structure) an extra button, labeled ‘lags...’, appears at the
bottom of the dialog as highlighted in Figure 9.8. Click the ‘lags...” button in
the specify model dialog box and the ‘lag order’ dialog box shown in Figure
9.9 opens. Click OK and the the 3 lagged values of inflation are added to
the model. Now, click OK in the specify model dialog as in Figure 9.8. The
model is estimated and the model window shown in Figure 9.10 opens.

Now, we’ll use the dialogs to extend the sample and generate the fore-
casts. From the model window choose Analysis>Forecasts. This opens
the Add observations dialog box shown in Figure 9.11. To add three obser-
vations change the number in the box to 3. Click OK to open the forecast
dialog box shown below in Figure 9.12.

By choosing to add 3 observations to the sample, the forecast range is

automatically set to 2006:06 to 2006:08. Notice that we’ve chosen "automatic
forecast (dynamic out of sample).” Click OK and the forecast results appear:

For 95% confidence intervals, t(262, .025) = 1.969
Obs infln Forecast SE 95% C.I.

1998:02  0.000000  0.23350

2006:03 0.350966

0.05914
2006:04 0.598804 0.37476
2006:05 0.446762  0.34046
2006:06 0.26015 0.19724 -0.12823 - 0.64854
2006:07 0.24872 0.21054 -0.16584 - 0.66329
0

2006:08 .26972 0.21111 -0.14596 - 0.68541
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Figure 9.8: From the main window select Model>0rdinary least squares.
This brings up the specify model dialog box that includes a button for adding
lags of the variables to your model

"4‘ gretl: specify model - IEllil

oLS
corst Cependent variable
month i Choose -= | IinFIn
Wage
pCiage [T =et as default
Cpi
lylily Independent wariables

consk

add -= |

=- Remove |

[T Robust standard errors  corfioure |
lags. .. |*

ﬂelp | %glear | M Cancel

Pox |
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Figure 9.9: Check the box labeled ‘Lags of dependent variable’ and change
the second counter to ‘3’ as shown.

% lag order Y [m] P
Yariable lags ar specific lags

¥ Lags of dependent varisble

nfin 1 [Hwls & T |

‘E-f Help | x Zancel

Figure 9.10: Choose Analysis>Forecasts from the estimated forecast
model to open the forecast dialog box.

ol

|Eile Edit Tests Save Graphs LaTex |

Display actual, fitted, residual

Model 1: OLS estimates
Dependent wvarishle: inf

1954:04-2006:05
Confidence intervals For coefficients
Confidence ellipse...

VARILELE C 0| Coefficient covariance matrix T 3TAT P-VALUE
AMOYA
const Bootstrap. .. 05 7.447  <0.00001 ***
infln 1 T. 37329 . OeTI508 6.072 <0.00001 *#*%
infln 2 -0.z217919 0.0644725 -3.380 0.000549 *#*+*
infln 3 0.101254 0.0612680 1.653 0.09980 *

Mean of dependent wariashle = 0.253389
Standard deviation of dep. war. = 0.210185
Sum of sguared residuals = 10,1934
Standard error of residuals = 0.197247
Unadjusted R-sguared = 0.129295

Adjusted R-sguared = 0.,119325

F-statistic (3, 262) = 12.9685 (p-value < 0.00001)
Durbin-Watson statistic = 2.00025

First-order autocorrelation coeff. = -0.00147561
Log-likelihood = 56.3753

Akaike information criterion (AIC) = -104.751
Schwarz Bayesian criterion (BIC) = -90.4166
Hannan-guinn criterion (HQC) = -98.992

Close
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Figure 9.11: Using Data>Add observations from the main gretl pull-down
menu will extend the sample period. This is necessary to generate forecasts.

'i Add observations

=10l x|

There are no observations available For forecasting
aut of sample. ¥ou can add some obseryations now

it o wish,

mumber af observations to add: ||3 @

x Cancel

Pox

Figure 9.12: Forecast dialog box

% gretl: forecast

Skark End

F t :
orecast range IZEIEIE:':'E' j IEDDE:DE ﬂ

=10l %]

(& aukomatic Forecast (dynamic out of sample)

{” dynamic Forecast
™ static forecast

" rolling one-skep ahead Forecasts

Mumber of pre-forecast observations to graph

100

x Zancel

Pox
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Miraculously, these match those in POE! Gretl also uses gnuplot to plot
the time series and the forecasts (with intervals) as shown in Figure 9.13.
The last three observations are forecasts (in blue) and include the 95%

Figure 9.13: Gretl calls gnuplot to generate a graph of the time series and
the forecast.

'i gretl: gnuplot graph k - | Ellil
T

1.4 T T T

infin ' ' '
121 forecast

95 percent confidence interval ——— "

1F

0.8

0.6

04+

0.2 +

oL

-0.2 +

0.4}

o6l |

-0.8

1998 1999 2000 2001 2002 2003 2004 2005 2006

| |C|ick on graph far pop-up menu

confidence intervals shown in green. Actual inflation appears in red.

9.4.2 Using a Script

Doing all of this using a script is easy as well. Simply estimate the model
using ols infln const infln(-1 to -3), use the addobs 3 command to
add 3 observations to the end of the sample, and forecast 3 periods using
fcasterr 2006:06 2006:08. The --plot option ensures that the graph
will be produced. The script is:

open c:\userdata\gretl\data\poe\inflation.gdt
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ols infln const infln(-1 to -3)
addobs 3
fcasterr 2006:06 2006:08 --plot

To estimate the distributed lag model of inflation
infli = a+ Bort + frre—1 + Boxi—2 + B3T3 + € (9.9)

where x; is the percentage change in wages at time ¢. The script is:

open c:\userdata\gretl\data\poe\inflation.gdt

ols infln const pcwage(0 to -3)

scalar inl = $coeff (pcwage)+$coeff (pcwage_1)
scalar in2 = inl + $coeff (pcwage_2)

in2 + $coeff (pcwage_3)

scalar in3

Here, the independent variable is pcwage, which is already in the dataset.
To add the contemporaneous (lag=0) and 3 lagged values to the list of
independent variables, simply add pcwage (0 to -3) as shown. The delay
multipliers are just the coefficients of the corresponding lagged variables.
The interim multiplier is obtained by cumulatively adding the coefficients
together. For instance the interim multiplier at lag 1 is equal to the sum of
the delay multipliers (e.g., interim multiplier at lag 1 is (Gp + (1). When
using the range version (e.g., pcwage (0 to -3)) of the language to generate
lags, gretl appends an underline _ and the corresponding lag number to the
variable. So, pcwage;_; is referred to as pcwage_1.

9.5 Autoregressive Distributed Lag Model

This model is just a generalization of the ones previously discussed. In
this model you include lags of the dependent variable (autoregressive) and
the contemporaneous and lagged values of independent variables as regres-
sors (distributed lags). The shorthand notation is ARDL(p,q) where p is
the maximum distributed lag and ¢ is the maximum autoregressive lag.
The model is

Yy =0+ ozt + 011+ ...+ 0qx—qg +O1yr—1 + ...+ Opy—p + v (9.10)
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The ARDL(3,2) model of inflation includes the contemporaneous and first 3
lagged values of pcwage and the first 2 lags of in fl as independent variables.?

The script is

open c:\userdata\gretl\data\poe\inflation.gdt
ols infln const pcwage(0 to -3) infln(-1 to -2)

The result appears in Figure 9.14.

Figure 9.14: Results of the autoregressive distributed lag model produced

by the script.
-lolx|
BRES x

gretl version 1.6.2 |
Current session: 2007/05/08 11:45
? ols infln const powage (0 to -3) inflni-1 to -2)

Model 4: OLS estimates using the 266 obhservations 1984:04-2006:05
Dependent wvarishle: infln

VARIABLE COEFFICIEMT STDERROR T STAT P-VALUE
const 0.0988766 0.046806% 2.112 0.03561 %%
powage 0.114903 0.0833501 1.378 0.1694z2
powadge_1 0.0377337 0.0812455 0.464 0. 64272
powage 2 0.0592746 0.0811736 o.730 0.46592
powage 3 0.236130 0.0829441 2.847 0.00477 #=%%
infln 1 0.353640 0.060411Z2 5.854 <0.00001 #*+
infln 2 -0.197561 0.0604212 -3.270 0.00122 +**

Mean of dependent wvariable = 0.253389
Standard deviation of dep. war. = 0.210185
ZBum of sguared residuals = 9.745Z¢6
Standard error of residuals = 0.194005
Unadjusted B-sguared = 0.167322

Adjusted B-sguared = 0.148032

F-statistic (&, 259) = 5.67409 (p-value < 0.00001)

Durbin-Watson statistic = 1.83031

First-order autocorrelation coeff. = 0.0343753

Durbin's h stat. 3.08607

(Using wvariable 6 for h stat, with T' = 265)

Log-likelihood = 62.3145

Akaike information criterion [AIC) = -110.629

Schwarz Bayesian cricerion (BIC) = -85.5446

Hannan-Quinn criterion (HQC) = —100.552 —
Excluding the constant, p-value was highest for wvarisble 9 (peowage_1) ﬂ

Clase: |

2Technically, lagged values of inflation are predetermined not independent, but we’ll
leave this discussion for others. Their treatment in a regression is the same, though.
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9.6 Script

open C:\userdata\gretl\data\poe\bangla.gdt
#declare the data time-series
setobs 1 1 —--time-series

#Least squares with wrong std errors
logs p a
ols 1_a const 1_p

#Least squares with HAC standard errors
#choose lag

set hac_lag nw2

#choose weights

set hac_kernel bartlett

#run regression with robust std errors
ols 1_a const 1_p --robust

#Nonlinear least squares

#step 1: set the starting values
genr betal = $coeff (const)

genr beta2 = $coeff(1l_p)

genr rho = 0

#step 2: type in the model
nls 1_a = betal*(l-rho) + rho*l_a(-1) + beta2+*(1_p-rho*1l_p(-1))
end nls

#save restricted sum of squared errors for the hypothesis test
scalar sser=$ess

#get the unrestricted sse
ols 1_a const 1_p 1_p(-1) 1_a(-1)
scalar sseu=$ess

scalar fstat = (sser-sseu)/(sseu/$df)
pvalue X 1 fstat
pvalue F 1 $df fstat
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#Correlogram

ols 1_a const 1_p --robust
genr ehat = $uhat

corrgm ehat 12

#LM test

ols 1_a const 1_p

genr ehat = $uhat

ols ehat const 1_p ehat(-1)
scalar NR2 = $trsq

#Dynamic forecasting in an autoregressive model
open C:\userdata\gretl\data\poe\inflation.gdt
ols infln const infln(-1 to -3)

addobs 3

fcasterr 2006:06 2006:08--plot

#Distributed Lag model and interim multipliers
ols infln const pcwage(0 to -3)

scalar inl = $coeff (pcwage)+$coeff (pcwage_1)
scalar in2 = inl + $coeff(pcwage_2)

scalar in3 = in2 + $coeff (pcwage_3)

#ARDL(3,2)

ols infln const pcwage(0 to -3) infln(-1 to -2)
#First 5 lag weights for infinite distributed lag
scalar b0 = $coeff (pcwage)

scalar bl = $coeff (infln_1)*b0+$coeff (pcwage_1)

scalar b2 = $coeff (infln_1)*bl+$coeff (infln_2)*b0+$coeff (pcwage_2)
scalar b3 = $coeff (infln_1)*b2+$coeff (infln_2)*bl+$coeff (pcwage_3)
scalar b4 = $coeff (infln_1)*b3+$coeff (infln_2)*b2
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Random Regressors and Moment
Based Estimation

In this chapter you will learn to use instrumental variables to obtain
consistent estimates of a model’s parameters when its independent variables
are correlated with the model’s errors.

10.1 Basic Model

Consider the linear regression model
yi=01+Pexi+e i=1,2,....N (10.1)

Equation (10.1) suffers from a significant violation of the usual model as-
sumptions when its explanatory variable is contemporaneously correlated
with the random error, i.e., Cov(e;,x;) = E(e;xz;) # 0. In this instance,
least squares is known to be both biased and inconsistent.

An instrument is a variable, z, that is correlated with  but not with

the error, e. In addition, the instrument does not directly affect y and
thus does not belong in the actual model. It is common to have more

170



CHAPTER 10. TWO-STAGE LEAST SQUARES 171

than one instrument for x. All that is required is that these instruments,
z1,%2,...,2%s, be correlated with x, but not with e. Consistent estimation
of (10.1) is possible if one uses the instrumental variables or two-stage
least squares estimator, rather than the usual OLS estimator.

10.2 IV Estimation

Gretl handles this estimation problem with ease using what is commonly
referred to as two-stage least squares. In econometrics, the terms two-stage
least squares (TSLS) and instrumental variables (IV) estimation are often
used interchangeably. The ‘two-stage’ terminology is a legacy of the time
when the easiest way to estimate the model was to actually use two separate
least squares regressions. With better software, the computation is done in
a single step to ensure the other model statistics are computed correctly.
Since the software you use invariably expects you to specify ‘instruments,’
it is probably better to think about this estimator in those terms from the
beginning. Keep in mind though that gretl uses the old-style term two-stage
least squares (tsls) as it asks you to specify instruments in it dialog boxes
and scripts.

To perform TSLS or IV estimation you need instruments that are cor-
related with your independent variables, but not correlated with the errors
of your model. First, load the ch10.gdt data into gretl. Then, to open the
basic gretl dialog box that computes the IV estimator choose Model>0ther
linear models>Two-Stage Least Squares from the pull-down menu as
shown below in Figure 10.1. This opens the dialog box shown in Figure
10.2.

In this example we choose y as the dependent variable, put all of the
desired instruments into the Instruments box, and put all of the independent
variables, including the one(s) measured with error, into the Independent
Variables box. If some of the right-hand side variables for the model are
exogenous, they should be referenced in both lists. That’s why the const
variable (for the constant) appears in both places. Press the OK button
and the results are found in Table 10.1. Notice that gretl does not report a
goodness-of-fit measure, R?, in the output generated for LaTeX shown here.
However, it does appear in the model window, ignoring the sound advice
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Table 10.1: TSLS results.
Model 1: TSLS estimates using the 100 observations 1-100
Dependent variable: y
Instruments: z1

Variable Coefficient Std. Error t-statistic p-value
const 1.10110 0.109128 10.0900 0.0000
X 1.19245 0.194518 6.1302 0.0000

Mean of dependent variable 1.38629

S.D. of dependent variable 1.83882

Sum of squared residuals 95.4985

Standard error of residuals (&) 0.987155

Degrees of freedom 98

Akaike information criterion 283.182

Schwarz Bayesian criterion 288.392

Hannan—Quinn criterion 285.291

Hausman test —

Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: x? = 15.0454
with p-value = 0.000104958

First-stage F'(1,98) = 38.9197
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Figure 10.1: Two-Stage Least Squares estimator from the pull-down menus
=10l x|

| Fle Tools Data Wiew Add Sample  Yariable Help |
chio.gdt Ordinary Least Squares...
m# |Variable name |Descriptwe |abel Other inear models ‘eighted Least Squares. ..

Heteroskedasticity corrected. ..

0 const guko-generated conskant Time series,
1 =
2y Banel

Two-5kage Leask Squares...

High precision OLS...

Monlinear models
4 2

5 3 Robust estimation

* | v | v | 5 I

Maximurm likelihood. ..
GMM...
Simultaneous equations. ..

Undated: Full range 1 - 100

|m| e O=| @ e 8|S

offered by the authors of your textbook to not compute it here. However,
gretl at least informs you that it is computed as the squared correlation
between observed and fitted values of the dependent variable.

If you prefer to use a script, the syntax is very simple. The script for
the example above is

open c:\userdata\gretl\data\poe\ch10.gdt
tsls y const x;const zl

The gretl command tsls calls for the IV estimator to be used and it is
followed by the linear model you wish to estimate. List the dependent vari-
able (y) first, followed by the independent variables (const x). A semicolon
separates the model to be estimated from the list of instruments (const
z1). Notice that the constant is listed again as an instrument; once again,
this is because it is exogenous with respect to the errors of the model and
all exogenous variables should be listed in both places.
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Figure 10.2: Two-Stage Least Squares dialog box

'L greth specify model - | Ellil

Two-skage least squares

consk Dependent variable
* Choose - | Iy

¥

zl [ sSet as default

z2

23 Independent wariables

consk
add -= | »
<- Remove |

Instruments

consk
z1

<- Remaove |
[T Robusk skandard errors | configure |

ﬂelp | %‘.glear | x Cancel

Pox |
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10.3 Specification Tests

There are three specification tests you will find useful with instrumental
variables estimation. By default, Gretl computes each of these whenever
you estimate a model using two-stage least squares. Below I'll walk you
through doing it manually and we’ll compare the manual results to the
automatically generated ones.

10.3.1 Hausman Test

The first test is to determine whether the independent variable(s) in
your model is (are) in fact uncorrelated with the model’s errors. If so,
then least squares is more efficient than the IV estimator. If not, least
squares is inconsistent and you should use the less efficient, but consistent,
instrumental variable estimator. The null and alternative hypotheses are
H,: Cov(x;,e;) =0 against H, : Cov(z;,e;) # 0. The first step is to use
least squares to estimate

z; = + 01zi + 0222 + v (10.2)
and to save the residuals, ;. Then, add the residuals to the original model
yi = P+ Boxi + 00 + € (10.3)

Estimate this equation using least squares and use the t-ratio on the coeffi-
cient § to test the hypothesis. If it is significantly different from zero then
the regressor, x; is not exogenous or predetermined with respect to e; and
you should use the IV estimator (TSLS) to estimate 1 and (2. If it is not
significant, then use the more efficient estimator, OLS.

The gretl script for the Hausman test is:

open c:\userdata\gretl\data\poe\ch10.gdt
ols x const zl z2

genr uhatl = $uhat

ols y const x uhatl

You may have noticed that whenever you use two-stage least squares
in gretl that the program automatically produces the test statistic for the
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Hausman test. There are several different ways of computing this statistic
so don’t be surprised if it differs from the one you compute manually using
the above script.

10.3.2 Testing for Weak Instruments

To test for weak instruments, regress each independent variable sus-
pected of being contemporaneously correlated with the error (z) onto all of
the instruments (z’s). If the overall F statistic in this regression is less than
10, then you conclude that the instruments are weak. If it is greater than 10,
you conclude that the instruments are strong enough. The following script
uses least squares to perform three such tests. The first regression assumes
there is only one instrument, z1; the second that the single instrument is
22; the third assumes both are instruments.

open c:\userdata\gretl\data\poe\ch10.gdt
ols x const z1

omit zl --quiet

ols x const z2 --quiet

omit z2 --quiet

ols x const zl z2 --quiet

omit zl z2 --quiet

When omit follows an OLS regression (e.g., ols x const zl z2), gretl
estimates a restricted model where the variables listed after it are omitted
from the model above. It then performs a joint hypothesis test that the
coefficients of the omitted variables are zero against the alternative that one
or more are not zero. The --quiet option reduces the amount of output you
have to wade through by suppressing the regressions; only the test results are
printed. The output from gretl appears in Figure 10.3 below: Notice that
the t-ratio on z1 is equal to 0.571088/0.0915416 = 6.23856 and the F(1,98)
statistic associated with the same null hypothesis (i.e., that the coefficient
on z1 is zero) is 38.9197. In fact there is an exact relationship between these
numbers since t?%k = Fy k. This is easily verified here by computing

'Recall that the null hypothesis for the overall F statistic is that all slopes are zero.
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Figure 10.3: Results from using the omit statement after least squares

gretl: script output - |EI|1|
DR B9 x
Model 1: OLS estimates using the 100 ohservations 1-100 _:J

Dependent varisble: x

VARILELE COEFFICIENT STDERRCR T STAT P-VALUE
const 0.219626 0.0514070 Z.698 0.005z22 *#*+*
zl 0.571088 0.0915416 6.239 <0.00001 *#*%*
Mean of dependent wariasbhle = 0.239161 \

Standard deviation of dep. war. = 0.956655

Sum of sguared residuals = 54,5494
Standard error of residuals = 0.513467
Unadjusted RE-sguared = 0.2584252
Adjusted R-sguared = 0.276945

6.2397=38.9197

Degrees of freedom = 98

Log-likelihood = -120.239

Akaike information criterion (AIC) = 244,475
Schwarz Bayesian criterion (BIC) = 249,688
Hannan-guinn criterion (HQC) = 246.586

na

omit zl —--guiet

Null hypothesis: the regression paramet

z1
z&

Close

= are zero for the variables

z1
Test statistic: F(l, 98) = 35.9197, with p-wvalus = 1.12535e-0038
? ols ¥ const z2 —-guiet
? omit zZ2 —--guiet

Null hypothesis: the regression parameters are zero for the variables

z&
Test statistic: Fi{l, 98) = 5.20707, with p-wvalus = 0.024655
? ols ®x const zl 22 —--guiet
? omit =zl 22 —--guiet

Null hypothesis: the regression parameters are zero for the variables

Test statistic: F(2, 97) = 24,2754, with p-wvalus = Z.5270%e=-009
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6.2392 = 38.9197.2 Since the F value is well beyond 10, we can reject the
hypothesis that the instrument z1 is weak in favor of the alternative that it
is strong enough to be useful.

The second pair of statements in the script assume that 22 is the single
available instrument and the omit statement is again used to elicit the F
statistic.

In the last regression, we use both instruments and the omit statement
in gretl to perform the joint test that the instruments are jointly weak.

Gretl proves its worth here. Whenever you estimate a model using
two stage least squares, gretl will compute the test statistic for the weak
instruments test.

10.3.3 Sargan Test

The final test is the Sargan test of the overidentifying restrictions implied
by an overidentified model. Recall that to be overidentified just means that
you have more instruments than you have endogenous regressors. In our ex-
ample we have a single endogenous regressor (z) and three instruments (z1,
22 and z3). The first step is to estimate the model using TSLS using all the
instruments. Save the residuals and then regress these on the instruments
alone. NR? from this regression is approximately x? with the number of
surplus instruments as your degrees of freedom. Gretl does this easily since
it saves TR? as a part of the usual regression output, where T is the sample
size (which we are calling V). The script for the Sargan test follows:

open c:\userdata\gretl\data\poe\ch10.gdt
list inst = const zl z2 z3

tsls y const x; inst

genr uhat2 = $uhat

ols uhat2 inst

genr test = $trsq

pvalue X 3 test

2The small discrepancy you will find if you try the calculation occurs because of round-
ing.
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This script uses a convenient way to accumulate variables into a set using
the 1list command. The command list inst = const zl z2 z3 puts the
variables contained in const, z1, z2, and z3 into a set called inst. Once
defined, the set of variables can be referred to as inst rather than listing
them individually as we’ve done up to this point. In the script above, inst
is used in the third line to list the instruments for tsls and again in the
fifth line to include these variables in the ols regression.

Rejection of the null hypothesis implies that one or more of the overi-
dentifying restrictions are not valid; you’ve chosen an inappropriate instru-
ment. If the test statistic is insignificant, then your set of instruments passes
muster. Whenever you have extra instruments (the model is overidentified),
gretl will compute and print out the results from the Sargan test auto-
matically. Unlike the Hausman test, these results should match those you
compute manually using the script.

Sargan over-identification test -
Null hypothesis: all instruments are valid
Test statistic: TR"2 = 13.1107
with p-value = P(Chi-Square(2) > 13.1107) = 0.00142246

10.4 Wages Example

The following script uses the results above to quickly reproduce the re-
sults from the wages example in your text. Open the data, restrict the
sample to those working (wage > 0), and generate logarithm of wages and
square experience.

open c:\userdata\gretl\data\poe\mroz.gdt

# restrict your sample to include only positive values for wage
smpl wage > O —-restrict

# generate ln(wage) and experience squared
genr lwage = log(wage)
genr expersq = exper*exper
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The next thing we’ll do is to create lists that contain regressors and instru-
ments. These will simplify the program and help us to avoid having to use
the continuation command for long lines of code.

# create lists of variables to include in each regression
# Regressors in x

list x = const educ exper expersq

# Instrument sets in zl1 and z2

list z1 = const exper expersq mothereduc

list z2 = const exper expersq mothereduc fathereduc

The first 1ist command puts the regressors const, educ, exper, and expersq
into a set called x. The first set of instruments includes all of the exogenous
variables in the list of regressors and adds mothereduc; it is called z1. The
second set, called z2, adds fathereduc to the list of instruments.

Now, estimate the model using least squares. Notice that the list of
regressors has been replaced by the list we created above. If education is
endogenous in this regression, then least squares is inconsistent and should
not be used.

# least squares regression of wage equation
ols lwage x

This produces:

lv;a\ge = — 0.522 4 0.107 educ + 0.0416 exper — 0.000811 expersq
(0.19863)  (0.0141) (0.0132) (0.00039)
T =428 R?=0.1509 F(3,424) = 26.286 & = 0.66642

(standard errors in parentheses)

Estimate the reduced form equation that uses mother’s education as the
sole instrument along with the other exogenous variables in the model; all
of these were collected into z1.

# least squares regression of the reduced form
ols educ z1
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This produces:
educ = 9.775 + 0.04386 exper — 0.001281 expersq + 0.268 mothereduc
(0.424)  (0.0417) (0.00124) (0.031)
T =428 R?>=0.1467 F(3,424) =2547 6 =2.1111

(standard errors in parentheses)

Estimate the model using the instrumental variable estimator. The in-
strumental variable estimators will be consistent if education is endogenous
or not. It is not efficient. In the first instance below, only mother’s educa-
tion is used as an instrument and in the second both mother’s and father’s
education are used.

# tsls regression using 1 instrument (mother’s education)
tsls lwage x ; z1

# tsls using 2 instruments (mother’s and father’s education)
tsls lwage x ; z2

The TSLS results for the regression with one instrument is:

Iwage = 0.1982 + 0.04926 educ + 0.04486 exper — 0.0009221 expersq
(0.473) (0.0374) (0.0136) (0.000406)

T =428 R?>=0.1293 F(3,424) =22.137 6 = 0.6796

(standard errors in parentheses)

and that for the model with two instruments is:

Model 3: TSLS estimates using the 428 observations 1-428
Dependent variable: lwage
Instruments: mothereduc fathereduc

Variable Coefficient Std. Error {-statistic p-value

const 0.0481 0.4003 0.120 0.904
educ 0.0614 0.0314 1.953 0.051
exper 0.0442 0.0134 3.288 0.001

expersq —0.0009 0.0004 —2.238 0.025
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Mean of dependent variable 1.19017
S.D. of dependent variable 0.723198
Sum of squared residuals 193.020
Standard error of residuals (&) 0.674712
F(3,424) 24.0965
Akaike information criterion 881.782
Schwarz Bayesian criterion 898.019
Hannan—Quinn criterion 888.195

Hausman test —
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: x? = 2.8256
with p-value = 0.0927721

Sargan over-identification test —
Null hypothesis: all instruments are valid
Test statistic: TR? = 0.378071
with p-value = P(x? > 0.378071) = 0.538637

First-stage F'(2,423) = 55.4003

A Hausman test statistic is manually computed to test the validity of
the instruments. The least squares residuals from the reduced form equation
are regressed on all exogenous and instrumental variables. The residuals are
saved and added to the original structural equation. Test the significance of
the residuals coefficient using a t-test, or as we’ve done here, the equivalent
F(1,N-K) test using the omit statement.

# Hausman test (check the t-ratio on ehat for significance)
ols educ z2 --quiet

genr ehat=$uhat

ols lwage x ehat --quiet

omit ehat --quiet

This produces:

Test statistic: F(1, 423) = 2.7926, with p-value = 0.09544
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which is very close the automatic result produced by gretl as part of the
tsls output.

To test the strength of the instruments we estimate the reduced form
equation for education and conduct a joint significance test of the two in-
struments (mothereduc and fathereduc). Once again, the -——quiet option
is used to suppress unnecessary output.

# test for strength of instruments (coeffs on instruments
# are jointly zero)

ols educ z2 --quiet

omit mothereduc fathereduc --quiet

Finally the test of overidentification is done. This requires residuals from
the instrumental variable estimator, TSLS. Estimate the model using TSLS
and save the residuals. In the second regression, which is estimated using
least squares, these residuals are regressed on all exogenous and instrumental
variables. NR? from this regression is compared to the x?(2) distribution. If
the p-value is smaller than the desired « then at least one of the instruments
is not appropriate. You’ll need to either drop the offending ones or find
others to use.

# (Sargan’s test)

# requires residuals from tsls to use in this test
tsls lwage x; z2

genr vhat=$uhat

ols vhat z2
genr lmstat = $trsq
pvalue X 2 lmstat

The script will produce the same results you get from gretl’s tsls command.

10.5 Script

open c:\userdata\gretl\data\poe\ch10.gdt
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tsls y const x; const zl

#Hausman test

ols x const zl z2
genr uhatl = $uhat
ols y const x uhatl

#Testing for weak instruments

open c:\userdata\gretl\data\poe\ch10.gdt
ols x const zl

omit zl1 --quiet

ols x const z2 -—quiet

omit z2 --quiet

ols x const zl z2 --quiet

omit zl z2 --quiet

#Sargan Test

open c:\userdata\gretl\data\poe\ch10.gdt
list inst = const zl z2 z3

tsls y const x; inst

genr uhat2 = $uhat

ols uhat2 inst

genr test = $trsq

pvalue X 3 test

#Wages Example
open c:\userdata\gretl\data\poe\mroz.gdt

# restrict your sample to include only positive values for wage
smpl wage > O --restrict

# generate 1n(wage) and experience squared
genr lwage = log(wage)
genr expersq = exper*exper

# create lists of variables to include in each regression
# Regressors in x

list x = const educ exper expersq

# Instrument sets in zl1 and z2

list z1 = const exper expersq mothereduc
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list z2 = const exper expersq mothereduc fathereduc

# least squares regression of wage equation
ols lwage x

# least squares regression of the reduced form
ols educ z1

# tsls regression using 1 instrument (mother’s education)
tsls lwage x; z1

# tsls using 2 instruments (mother’s and father’s education)
tsls lwage x ; z2
genr vhat = $uhat

# Hausman test (check the t-ratio on ehat for significance)
ols educ z2 --quiet

genr ehat=$uhat

ols lwage x ehat --quiet

omit ehat --quiet

# test for strength of instruments (coeffs on instruments
# are jointly zero)

ols educ z2 --quiet

omit mothereduc fathereduc --quiet

#Repeat using HCCME
ols educ z2 --robust --quiet
omit mothereduc fathereduc --quiet

# test for validity of instruments using residuals from tsls
# (Sargan’s test)

ols vhat z2 --quiet

genr lmstat = $trsq

pvalue X 2 lmstat
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Simultaneous Equations Models

In Chapter 11 of POFE the authors present a model of supply and de-
mand. The econometric model contains two equations and two dependent
variables. The distinguishing factor for models of this type is that the values
of two (or more) of the variables are jointly determined. This means that a
change in one of the variables causes the other to change and vice versa. The
model is demonstrated using the truffle example which is explained below.

11.1 Truffle Example

Consider a supply and demand model for truffles:

Q; = +a2PZ-+a3PS,~+a4DIi+ef (11.1)
Qi =1 + B2 P + B3PF; + ¢} (11.2)

The first equation (11.1) is demand and @ us the quantity of truffles traded
in a particular French market, P is the market price of truffles, P.S is the
market price of a substitute good, and DI is per capita disposable income
of the local residents. The supply equation (11.2) contains the variable PF,
which is the price of a factor of production. Each observation is indexed by
i,1=1,2,...N. As explained in the text, prices and quantities in a market

186



CHAPTER 11. SIMULTANEOUS EQUATIONS MODELS 187

are jointly determined; hence, in this econometric model P and @) are both
endogenous to the system.

11.2 The Reduced Form Equations

The reduced form equations express each endogenous variable as a lin-
ear function of every exogenous variable in the entire system. So, for our
example

Qi =m11 + w21 PS; + w31 DI; + iy PF; + v (11.3)
P; =mi9 + mo PS; + w32 DI; + o PF; + 10 (11.4)

Since each of the independent variables is exogenous with respect to () and
P, the reduced form equations (11.3) and (11.4) can be estimated using least
squares. In gretl the script is

open c:\userdata\gretl\data\POE\truffles.gdt
ols q const ps di pf
ols p const ps di pf

The gretl results appear in Table 11.1

11.3 The Structural Equations

The structural equations are estimated using two-stage least squares.
The basic gretl commands for this estimator are discussed in Chapter 10.
The instruments consist of all exogenous variables, i.e., the same variables
you use to estimate the reduced form equations (11.3) and (11.4).

The gretl commands to open the truffle data and estimate the structural
equations using two-stage least squares are:

open c:\userdata\gretl\data\poe\truffles.gdt
tsls q const p ps di; const ps di pf
tsls q const p pf; const ps di pf
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Table 11.1: The least squares estimates of the reduced form equations.

q = 7.89510 + 0.656402 ps + 2.16716 di — 0.506982 pf
(2.434) (4.605) (3.094) (—4.181)

T=30 R®2=0.6625 F(3,26)=19.973 6 = 2.6801

(t-statistics in parentheses)

D = —32.5124 + 1.70815 ps + 7.60249 di + 1.35391 pf
(—4.072) (4.868) (4.409) (4.536)

T =30 R?>=0.8758 F(3,26)=69.189 & = 6.5975

(t-statistics in parentheses)

The second line of the script estimates the demand equation. The gretl
command tsls calls for the two-stage least squares estimator and it is fol-
lowed by the structural equation you wish to estimate. List the dependent
variable (q) first, followed by the regressors variables (const p ps di). A
semicolon separates the model to be estimated from the list of instruments
(const ps di pf). Don’t forget to list the constant again as an instrument.
The third line uses the same format to estimate the parameters of the sup-
ply equation. Refer to section 10.2, and Figures 10.1 and 10.2 specifically,
about using the GUI to estimate the model.

The results from two-stage least squares appear below in Table 11.2

11.4 Fulton Fish Example

The following script estimates the reduced form equations using least
squares and the demand equation using two-stage least squares for Graddy’s
Fulton Fish example.

In the example, In(quantity) and In(price) are endogenously determined.
There are several potential instruments that are available. The variable
stormy may be useful in identifying the demand equation. In order for
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Table 11.2: Two-stage least square estimates of the demand and supply of
truffles.

Demand

= —4.27947 — 0.374459p + 1. 29603 ps + 5.01398 di
(-0.772)  (—2.273) (3.649) (2.196)

q
T =30 R?>=0.1376 F(3,26) =2.5422 & = 4.93

(t-statistics in parentheses)

Supply

q = 20.0328 + 0.337982p — 1.00091 pf
(16.379) (13.563) (—12. 128)

T =30 R?>=0.8946 F(2,27)=124.08 6 = 1.4976

(t-statistics in parentheses)

the demand equation to be identified, there must be at least one variable
available that effectively influences the supply of fish without affecting its
demand. Presumably, stormy weather affects the fishermen’s catch with-
out affecting people’s appetite for fish! Logically, stormy may be a good
instrument.

The model of demand includes a set of dummy variables for day of the
week. Friday is omitted to avoid the dummy variable trap. These day of
week variables are not expected to affect supply; fishermen catch the same
amount on average on any working day. They may affect demand though,
since people in some cultures buy more fish on some days than others.

In both demand and supply equations, In(price) is the right-hand side
endogenous variable. Identification of the demand equation requires stormy
to be significantly correlated with Iprice. This can be determined by looking
at the t-ratio in the [price reduced form equation.

For supply to be identified, at least one of the day of the week dummy
variables (mon tue wed thu), which are excluded from the supply equation,
has to be significantly correlated with Iprice in the reduced form. If not, the
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supply equation cannot be estimated; it is not identified.

Proceeding with the analysis, open the data and estimate the reduced
form equations for lquan and Iprice. Go ahead and conduct the joint test of
the day of the week variables using the ——quiet option. The results of this
test can help determine whether the supply equation is identified.

open C:\userdata\gretl\data\poe\fultonfish.gdt

#Estimate the reduced form equations
ols lquan const stormy mon tue wed thu
ols lprice const stormy mon tue wed thu
omit mon tue wed thu --quiet

The reduced form results for lquan appear below:

Model 1: OLS estimates using the 111 observations 1-111
Dependent variable: lquan

Variable Coefficient Std. Error ¢-statistic p-value

const 8.810 0.147 59.922 0.000
stormy —0.388 0.144 —2.698 0.008
mon 0.101 0.207 0.489 0.626
tue —0.485 0.201 —2.410 0.018
wed —0.553 0.206 —2.688 0.008
thu 0.054 0.201 0.267 0.790
Standard error of residuals (&) 0.681790
Unadjusted R? 0.193372
F(5,105) 5.03429
p-value for F'() 0.000356107

and the results for Iprice

Model 2: OLS estimates using the 111 observations 1-111
Dependent variable: lprice
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Variable Coefficient Std. Error t¢-statistic p-value
const —0.272 0.076 —3.557 0.001
stormy 0.346 0.075 4.639 0.000
mon —0.113 0.107 —1.052 0.295
tue —0.041 0.105 —0.394 0.695
wed —0.012 0.107 —0.111 0.912
thu 0.050 0.104 0.475 0.636

Unadjusted R? 0.178889
F(5,105) 4.57511
p-value for F'() 0.000815589

In this equation, stormy is highly significant with a t-ratio of 4.639, but
the daily dummy variables are not. A joint test of their significance reveals
that they are not jointly significant, either; the F-statistic has a p-value of
only .65. Supply is not identified and can’t be estimated without better
instruments.

The two-stage least squares estimates of the demand equation are ob-
tained using:

#TSLS estimates of demand
tsls lquan const lprice mon tue wed thu; \
const stormy mon tue wed thu

to produce the result:

Model 3: TSLS estimates using the 111 observations 1-111
Dependent variable: lquan
Instruments: stormy

Variable Coefficient Std. Error i-statistic p-value
const 8.506 0.166 51.189 0.000
mon —0.025 0.215 —0.118 0.906
tue —0.531 0.208 —2.552 0.011
wed —0.566 0.213 —2.662 0.008
thu 0.109 0.209 0.523 0.601
Iprice —1.119 0.429 —2.612 0.009
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Mean of dependent variable 8.52343
S.D. of dependent variable 0.741672
Sum of squared residuals 52.0903
Standard error of residuals (&) 0.704342
F(5,105) 5.13561
p-value for F() 0.000296831

Hausman test —
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: x? = 2.4261
with p-value = 0.119329

First-stage F'(1,105) = 21.5174
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11.5 Script

open c:\userdata\gretl\data\PoE\truffles.gdt
# Least Squares

ols g const ps di pf

ols p const ps di pf

#Two Stage Least Squares

open c:\userdata\gretl\data\PoE\truffles.gdt
tsls q const p ps di;const ps di pf

tsls q const p pf;const ps di pf

# Fulton Fish example
open C:\userdata\gretl\data\PoE\fultonfish.gdt

#Estimate the reduced form equations
ols lquan const stormy mon tue wed thu
ols lprice const stormy mon tue wed thu
omit mon tue wed thu --quiet

#TSLS estimates of demand
tsls lquan const lprice mon tue wed \
thu;const stormy mon tue wed thu
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Analyzing Time Series Data and
Cointegration

The main purpose this chapter is to use gretl to explore the time series
properties of your data. One of the basic points we make in econometrics is
that the properties of the estimators and their usefulness for point estimation
and hypothesis testing depend on how the data behave. For instance, in
a linear regression model where errors are correlated with regressors, least
squares won’t be consistent and consequently it should not be used for either
estimation or subsequent testing.

In time series regressions the data need to be stationary. Basically this
requires that the means, variances and covariances of the data series cannot
depend on the time period in which they are observed. For instance, the
mean and variance of the probability distribution that generated GDP in
the third quarter of 1973 cannot be different from the one that generated
the 4th quarter GDP of 2006. Observations on stationary time series can be
correlated with one another, but the nature of that correlation can’t change
over time. U.S. GDP is growing over time (not mean stationary) and may
have become less volatile (not variance stationary). Changes in information
technology and institutions may have shortened the persistence of shocks in
the economy (not covariance stationary). Nonstationary time series have to
be used with care in regression analysis. Methods to effectively deal with
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this problem have provided a rich field of research for econometricians in
recent years.

12.1 Series Plots

The first thing to do when working with time series is to take a look at
the data graphically. A time series plot will reveal potential problems with
your data and suggest ways to proceed statistically. In gretl time series
plots are simple to generate since there is a built in function that performs
this task. Open the data file usa.gdt.

open C:\userdata\gretl\data\poe\usa.gdt

Then, use your mouse to select all of the series as shown in Figure 12.1 below.
Then, select Add>First differences of selected variables from the

Figure 12.1: Select all of the series.

=
File Tools Data YWew Add Sample  Yariable  Model Helpl

chapter12_usa.gdt

D # |'u'ariab|e name |Descriptive label |

0 const auto-generated co
falaa] real US gr

2 inflation annual inflation rat

3 FedFunds Federal Funds rate

4 Bonds 3-year Bond rate

Cuarterly: Full range 1935:1 - 2005:1

|@|=|a|m| @ 7 el 5 |5

pull-down menu as shown in Figure 12.2. The first differences of your time
series are added to the data set and each of the differenced series is prefixed
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Figure 12.2: Add the first differences of the selected series from the pull-
down menu.

=lolx|

File Tools Data Wiew Sample  Yariable  Model Helpl

chapter12_usa.qdt Logs of selected variables
D # |'u'ariab|e e |Descri Squares of selected variables |
Lags of selected variables
0 const auto- —
e 11 1| Eirst differenc elected variables
2 inflation Loqg differences of selected variables
Tl Seasonal differences of selected variables

4 Bonds

Index variable
Time krend

Random wariable 3

Periodic durmmies

Init durnmies

Time dumnmies

Dumnmies For selecked discrete wariables

Define new variable. ..
TIIarterTy: Pl range 199911 - 20051

|@| | a|m| @ 7 el 4 | S

with ‘d_, e.g., gdp; — gdp;—1 = d_gdp. Plotting the series can be done in
any number of ways. The easiest is to use view>multiple graphs>Time
series from the pull-down menu. This will allow you to graph the eight
series in two batches. T'wo batches are required since the maximum number
of series that can be graphed simultaneously is currently limited to six.

Select gdp, inflation, d_gdp, and d_inflation as shown in Figure
12.3. The result appears in Figure 12.4. Repeat this exercise for the remain-
ing series to get the result shown in Figure 12.5.

12.2 Tests for Stationarity

The (augmented) Dickey-Fuller test can be used to test for the station-
arity of your data. To perform this test, a few decisions have to be made
regarding the time series. The decisions are usually made based on visual
inspection of the time series plots. By looking at the plots you can deter-
mine whether the time series have a linear or quadratic trend. If the trend
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Figure 12.4: Multiple time series graphs.
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Figure 12.5: Multiple time series graphs for Fed Funds rate and 3 year
bonds.
il
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in the series is quadratic then the differenced version of the series will have a
linear trend in them. In Figure 12.5 you can see that the Fed Funds rate ap-
pears to be trending downward and its difference appears to wander around
some constant amount. Ditto for bonds. This suggests that the Augmented
Dickey Fuller test regressions for each of the series should contain a constant,
but not a time trend.

The GDP series in the upper left side of Figure 12.4 appears to be slightly
quadratic in time. The differenced version of the series that appears below
it has a slight upward drift and hence I would choose an ADF test that
included a constant and a time trend. As you may have guessed, analyzing
time series in this way is a bit like reading entrails and there is something of
an art to it. Our goal is to reduce some of the uncertainty using formal tests
whenever we can, but realize that choosing the appropriate test specification
requires some judgement by the econometrician.

The next decision is to pick the number of lagged terms to include in the
ADF regressions. Again, this is a judgement call, but the residuals from the
ADF regression should be void of any autocorrelation. Gretl is helpful in
this respect since it reports the outcome of an autocorrelation test whenever
the built-in ADF routines are used. Below is the example from your text,
where the stationarity of the Fed Funds rate and the three year bond series
are explored.

To perform the ADF test on the Fed Funds rate, use the cursor to high-
light the series and click Variable>Augmented Dickey Fuller test from
the pull-down menu as shown in Figure 12.6 below. This brings up the
dialog box shown in the next Figure, 12.7. Notice that here is where you
inform gretl whether you want to include a constant, trend, trend squared,
seasonal dummies, etc. We have chosen to use only 1 lag, and to include a
constant in the ADF regression. Also, we’ve checked the box to have gretl
report the results from the regression itself in order to make the results a
bit more transparent.

At the bottom of the dialog you must choose whether you want to use
the level or the difference of the variable. Choosing the level, as shown in
the box, puts the difference on the left-hand side of the regression. This
can be a bit confusing, but in reality it should not be. Remember, you are
testing to see whether the levels values of the series are stationary. Choosing
this box is telling gretl that you want to first test levels.
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Figure 12.6: Choose the ADF test from the pull-down menu.

& gretl =10l x|
File Tools Data Wew Add Sample fodel Help |
chapter12_usa.qdt @ Find. .. Ctrl+F
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If you want to check to see whether the differences are nonstationary,
then click the radio button below the one indicated. Click OK and the
results appear as in Figure 12.8.

The test results are quite informative. First it tells you that you are
performing a test based on a regression with a constant. It provides you
with an estimate of +, which it refers to as a-1, the t-ratio for v, and the
correct p-value for the statistic as computed by Davidson and MacKinnon.
It also reports an estimated autocorrelation coefficient for the errors (0.061)
which should be small if you have chosen the correct number of lags in the
ADF regression.

The null hypothesis of the ADF test is that the time series has a unit
root and is not stationary. If you reject this hypothesis then you conclude
that the series is stationary. To not reject the null means that the level is
not stationary. Here, the test statistic for the stationarity of the Fed Funds
rate is -2.090 which has a p-value of 0.24875. Nonstationarity of the Fed
Funds rate can not be rejected in this case at the usual 5 or 10% levels of
significance.

One more thing should be said about the ADF test results. Gretl ex-
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Figure 12.7: The ADF test dialog box.
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Figure 12.8: The ADF test results.

bugmented Dickey-Fuller tests, order 1, for FedFunds
sample size 79
unit-root null hypothesis: a = 1

LESL Wwith constant

model: (1 - Ly = b0 + (a-1)*%y(-1) + ... + e
lst-order autocorrelation coeff. for e: 0.061
estimated wvalue of (a - 1): -0.0370665

test statistic: tau c(l) = -2.0903

asymptotic p-wvalue 0.2487

Augmented Dickey-Fuller regression
OLS estimates using the 79 ohserwvations 1955:3-2005:1
Dependent variable: d FedFunds

VARIAELE COEFFICIENT STDERROR
const 0.177562 0.100751
FedFunds 1 -0.0370665 0.0177387
d FedFunds_1 0.6724758 0.0353664

P—walues bhased on MacKinnon (JAE, 19986)

T ZTAT

1.765
-2.090
7.878

P-VALUE

0.24875
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presses the model in a slightly different way than your textbook. The model
is
(1—L)y: =Bo+ (a—Dyr—1 + 1 Ays—1 + ex (12.1)

The coefficient 3y is included because you believe the series has a trend,
(v — 1) = 7y is the coefficient of interest in the Dickey-Fuller regression, and
a1 is the term that ‘augments’ the Dickey-Fuller regression. It is included
to eliminate autocorrelation in the model’s errors, e;, and more lags can
be included if needed to accomplish this. The notation on the left side of
the equation (1 — L)y, makes use of the lag operator, L. The lag operator
performs the magic Ly; = y—1. Thus, (1—L)y: = yi— Lyt = yt—yi—1 = Ayy!

The next thing to do is to create a set of summary statistics. In this case,
the textbook has you produce summary statistics for subsamples of the data.
The first subsample consists of the 40 observations from 1985:1 to 1994:4.
The second also contains 40 observations (a decade!) and continues from
1995:1 to 2004:4. The summary command is used to obtain the summary
statistics on the desired subsample. In the script, open the data file usa.gdt
and change the sample to 1985:1-1994:4 using the command smpl 1985:1
1994:4. Issue the summary command to print the summary statistics of all
variables in memory to the screen. Finally, restore the sample to the full
range using smpl full.

Gretl’s smpl functions are cumulative. This means that whatever mod-
ifications you make to the sample are made based on the sample that is
already in memory. So, to get summary statistics on the second subsample
(which is not in memory) you have to restore the full sample first using smpl
full. It is a little clumsy, but it makes sense once you know how it works.

open C:\userdata\gretl\data\poe\usa.gdt

smpl 1985:1 1994:4
summary
smpl full

smpl 1995:1 20054:4

summary
smpl full

The sample can be manipulated through the dialogs as well. Open the
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dataset and select Sample>Set range from the pull-down menu to reveal
the dialog in Figure 12.9. Use the scroll buttons to change the ending date

Figure 12.9: Choose Sample>Set range to reveal the Set sample dialog box.

Use the scroll buttons to set the desired sample range.

'5_ gretl: set samg

=10 =]

Set sample range

Skark:
1985:1 i‘

Ohservations: 40

x Cancel ‘

End:

Pox

to 1994:4. The observation counter will change and show that the selected
sample has 40 observations. Click OK and you are returned to the main
gretl window. This is shown in the next Figure, 12.10. Now, select all of
the variables either using Crtl4+A from the keyboard or Data>Select all
from the pull-down menu. Finally, View>Summary statistics will reveal
the desired information, which is shown below:

Summary Statistics, using the observations 1985:1-1994:4

Variable Mean

gdp 5587.70
inf 3.55601
F 6.28808
B 7.22700

Variable Std. Dev.

gdp 922.950
inf 1.09067
F 2.08741
B 1.62734

Median

5650.35
3.50904
6.65667
7.49000

C.V.

0.165175
0.306713
0.331963
0.225175

Minimum
4119.50
1.30831

2.99000
4.32000

Skewness

0.0439792
0.0926796
—0.301024
—0.224819

Maximum

7232.20
6.03757
9.72667
10.6767

Ex. kurtosis

—1.1688
—0.455736
—1.1781
—0.713900

Now restore the full sample using Sample>Restore full range from the
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Figure 12.10: Any changes to the sample should be visible in the main
window. Here you can see that the data in memory consist of the 1985:1-
1994:4 subsample.
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pull-down menu and repeat, changing the sample range to 1995:1 - 2004:4
using the set sample dialog. The results are

Summary Statistics, using the observations 1985:1-2005:1

Variable Mean Median  Minimum Maximum

gdp 7584.25 7298.30 4119.50 12198.8
inf 2.99005 2.90131 1.24379 6.03757
F 5.16955  5.50667 0.996667 9.72667
B 5.94741 6.00000 1.77333 10.6767

Variable Std. Dev. C.V. Skewness Ex. kurtosis

gdp 2312.62 0.304924 0.266928 —1.1168
inf 1.05382 0.352444 0.571135 0.0136503
F 2.29634 0.444206 —0.199304 —0.760287
B 2.03711 0.342521 —0.109496 —0.553230

12.3 Spurious Regressions

It is possible to estimate a regression and find a statistically significant
relationship even if none exists. In time series analysis this is actually a
common occurrence when data are not stationary. This example uses two
data series, rwl and rw2, that were generated as independent random walks.

rwy Yt = Yp—1 + V1t (12.2)

Wy Ty = X1 + Vot (12.3)

The errors are independent standard normal random deviates generated
using a pseudo-random number generator. As you can see, z; and y; are
not related in any way. To explore the empirical relationship between these
unrelated series, load the spurious.dta data, create a time variable, and
declare the data to be time series.

open C:\userdata\gretl\data\poe\spurious.gdt

The sample information at the bottom of the main gretl window indicates
that the data have already been declared as time series and that the full
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range (1-700) is in memory. The first thing to do is to plot the data using
a time series plot. To place both series in the same time series graph,
select View>Graph specified vars.>Time series plots from the pull-
down menu. This will reveal the ‘define graph’ dialog box. Place both series
into the ‘Selected vars’ box and click OK. The result appears in Figure 12.11
below. A scatter plot is revealing as well. Select View>Graph specified

Figure 12.11: These random walk series appear to be correlated but they
are not. It is not uncommon to observe spurious relationships between
nonstationary series.

"; gretl: gnuplot graph - |E||L|
70 vl T T T T T T T
rw2 |
80 | Ay N L A |
L

v] 100 200 300 400 500 600 700

| |Click on graph for pop-up menu

vars.>X-Y scatters and place rw2 on the X-axis, rwl on the Y-axis to
produce the next graph (Figure 12.12. The linear regression confirms this.
Left click on the graph to reveal the pop-up menu shown in Figure 12.13.
Select the OLS estimates option to reveal the regression results in Table
12.1.

The coefficient on rw2 is positive (.842) and significant (t = 40.84 >
1.96). However, these variables are not related! The observed relationship
is purely spurious. The cause of the spurious result is the nonstationarity
of the two series. This is why you must check your data for stationarity
whenever you use time series in a regression.
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Figure 12.12: The scatter plot of the random walk series makes them appear
to be related, but they are not. They are nonstationary and the relationship

is spurious.

rwl

70
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Figure 12.13: Left-click on the graph to reveal this menu.
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Table 12.1: OLS estimates of a spurious relationship using the 700 observa-
tions of the spurious.gdt dataset.

Dependent variable: rwl

Variable Coefficient Std. Error t-statistic p-value
const 17.8180 0.620478 28.7167 0.0000
rw2 0.842041 0.0206196 40.8368 0.0000
Unadjusted R? 0.704943
Adjusted R? 0.704521

The script to produce these graphs is very simple. Use

open C:\userdata\gretl\data\poe\spurious.gdt

gnuplot rwl rw2 --with-lines --time-series
gnuplot rwl rw2
ols rwl rw2 const

The first plot applies lines and uses the time-series option to use time as the
X-axis measurement. The second plot is a simple scatter with the first vari-
able on the Y-axis and the second on the X-. The final statement estimates
the regression.

12.4 Cointegration

Two nonstationary series are cointegrated if they tend to move together
through time. For instance, we have established that the levels of the Fed
Funds rate and the 3-year bond are nonstationary, whereas their differences
are stationary. In the opaque terminology used in time series literature, each
series is said to be “integrated of order 1”7 or I(1). If the two nonstationary
series move together through time then we say they are “cointegrated.” Eco-
nomic theory would suggest that they should be tied together via arbitrage,
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but that is no guarantee. In this context, testing for cointegration amounts
to a test of the substitutability of these assets.

The basic test is very simple. Regress one I(1) variable on another using
least squares. If the series are cointegrated, the residuals from this regression
will be stationary. This is verified using augmented Dickey-Fuller test.

The null hypothesis is that the residuals are nonstationary, which implies
that the series are not cointegrated. Rejection of this leads to the conclu-
sion that the series are cointegrated. The coint function in gretl carries
out each of the three steps in this test. First, it carries out a Dickey-Fuller
test of the null hypothesis that each of the variables listed has a unit root.
Then it estimates the cointegrating regression using least squares. Finally,
it runs a Dickey Fuller test on the residuals from the cointegrating regres-
sion. This procedure, referred to as the Engle-Granger cointegration test
and discussed in chapter 12 of Hill et al. (2008), is the one done in gretl by
default. Gretl can also perform cointegration tests based on maximum like-
lihood estimation of the cointegrating relationships proposed by Johansen
and summarized in (Hamilton, 1994, Chapter 20). The Johansen tests use
the coint2 command, which is explained in gretl’s documentation.

Figure 12.14 shows the dialog box used to test cointegration in this way.
To obtain it use Mode1>Time series>Cointegration test>Engle-Granger
from the main gretl window. In the dialog box you have to indicate how
many lags you want in the initial Dickey-Fuller regressions on the the vari-
ables, which variables you want to include in the cointegrating relationship,
and whether you want a constant, trend, or quadratic trend in the regres-
sions.

12.5 The Analysis Using a Gretl Script

Below, you will find a summary of the gretl commands used to produce
the results for the usa.gdt data from Chapter 12.

open C:\userdata\gretl\data\poel\usa.gdt

# Difference each variable
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Figure 12.14: The dialog box for the cointegration test.
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diff gdp inflation FedFunds Bonds

# Augmented Dickey Fuller regressions

# This is the manaul way of doing this regression
ols d_FedFunds const FedFunds(-1) d_FedFunds(-1)
ols d_Bonds const Bonds(-1) d_Bonds(-1)

# Augmented Dickey Fuller regressions using the built-in function
# Note: 1 lag is called for and a constant is included (--c)

adf 1 FedFunds --c --verbose

adf 1 Bonds --c --verbose

# Dickey-Fuller regressions for first differences

# Note: adf O indicates no lags for the difference version
adf 0 FedFunds --nc --verbose --difference

adf 0 Bonds -—nc --verbose --difference

# Engle-Granger test of cointegration
# Note: one lag is used in the adf portion of the test
coint 1 Bonds FedFunds

The diff function takes the first difference of each series. The adf
function conducts the augmented Dickey-Fuller test. The number 1 that
follows the adf command is the number of lags to use in the augmented
version, in this case only one. Then, list the series name and any options
you wish to invoke. Here, the ——c option is used, indicating that we want
a constant term included in the Dickey-Fuller regression. The --verbose
statement is included so that gretl will print the results from the Dickey-
Fuller regression itself. I think this makes interpreting the result much easier,
so I always include it.

Other options in the example include -nc which directs the Dickey-Fuller
regression to omit the constant altogether. The --difference option tells
gretl to run the augmented Dickey-Fuller regressions under the assumption
that the first difference of the series is nonstationary.

Finally, the coint command conducts the Engle-Granger test for the
cointegration of the two series that follow. Again, the number 1 that follows
coint is actually for the first step of the procedure, which tells gretl how
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many lags to include in the initial augmented Dickey-Fuller regressions.

The output generated from the simple command coint 1 Bonds FedFunds
is shown below.

# Engle-Granger test of cointegration
? coint 1 Bonds FedFunds
Step 1: testing for a unit root in Bonds

Augmented Dickey-Fuller test, order 1, for Bonds
sample size 79
unit-root null hypothesis: a =1

test with constant

estimated value of (a - 1): -0.0562195
test statistic: tau_c(1) = -1.97643
asymptotic p-value 0.2975

Step 2: testing for a unit root in FedFunds

Augmented Dickey-Fuller test, order 1, for FedFunds
sample size 79
unit-root null hypothesis: a =1

test with constant

estimated value of (a - 1): -0.0370668
test statistic: tau_c(1) = -2.0903
asymptotic p-value 0.2487

Step 3: cointegrating regression

Cointegrating regression -

OLS estimates using the 81 observations 1985:1-2005:1
Dependent variable: Bonds

VARIABLE COEFFICIENT STDERROR T STAT  P-VALUE

const 1.64373 0.19482 8.437 <0.00001 x*x*x
FedFunds 0.832505 0.03448 24.147 <0.00001 ***
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Unadjusted R-squared = 0.880682

Adjusted R-squared = 0.879172

Durbin-Watson statistic = 0.413856
First-order autocorrelation coeff. 0.743828
Akaike information criterion (AIC) 175.927
Schwarz Bayesian criterion (BIC) = 180.716
Hannan-Quinn criterion (HQC) = 177.848

Step 4: Dickey-Fuller test on residuals

lag order 1
sample size 79
unit-root null hypothesis: a =1

estimated value of (a - 1): -0.31432
test statistic: tau_c(2) = -4.54282
asymptotic p-value 0.0009968

P-values based on MacKinnon (JAE, 1996)

There is evidence for a cointegrating relationship if:

(a) The unit-root hypothesis is not rejected for the individual
variables.

(b) The unit-root hypothesis is rejected for the residuals
(uhat) from the cointegrating regression.

Notice that at the bottom of the output gretl gives you some useful advice
on interpreting the outcome of the test. Cointegration requires both series to
be I(1)-not rejecting nonstationarity in the initial Dickey-Fuller regressions
and then rejecting nonstationarity in the Dickey-Fuller regression using the
residuals. Nice!

12.6 Script

open C:\userdata\gretl\data\poe\usa.gdt
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# Difference each variable
diff gdp inflation FedFunds Bonds

# Augmented Dickey Fuller regressions
ols d_FedFunds const FedFunds(-1) d_FedFunds(-1)
ols d_Bonds const Bonds(-1) d_Bonds(-1)

# Augmented Dickey Fuller regressions using built in functions
adf 1 FedFunds --c --verbose
adf 1 Bonds --c —--verbose

# Dickey-Fuller regressions for first differences
adf 0 FedFunds -—-nc --verbose --difference
adf O Bonds --nc --verbose --difference

# Summary Statistics
smpl 1985:1 1994:4
summary

smpl full

smpl 1995:1 2004:4
summary

smpl full

#Spurious Regressions
open C:\userdata\gretl\data\poe\spurious.gdt

gnuplot rwl rw2 --with-lines --time-series
gnuplot rwl rw2
ols rwl rw2 const

# Engle-Granger test of cointegration
open C:\userdata\gretl\data\poe\usa.gdt
coint 1 Bonds FedFunds
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Vector Error Correction and Vector
Autoregressive Models:
Introduction to Macroeconometrics

The vector autoregression model is a general framework used to describe
the dynamic interrelationship between stationary variables. So, the first
step in your analysis should be to determine whether the levels of your data
are stationary. If not, take the first differences of your data and try again.
Usually, if the levels (or log-levels) of your time series are not stationary, the
first differences will be.

13.1 Vector Error Correction

If the time series are not stationary then we need to modify the vector
autoregressive (VAR) framework to allow consistent estimation of the rela-
tionships between the series. The vector error correction model (VECM)
is just a special case of the VAR for variables that are stationary in their
differences (i.e., I(1)) and cointegrated.

215
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In the first example, we use quarterly data on the Gross Domestic Prod-
uct of Australia and the U.S. to estimate a VEC model. We decide to use the
vector error correction model because (1) the time series are not stationary
in their levels but are in their differences (2) the variables are cointegrated.

In an effort to keep the discussion moving, the authors of POFE opted to
avoid discussing how they actually determined the series were nonstationary
in levels, but stationary in differences. This is an important step and I will
take some time here to explain how one could approach this. There are
several ways to do this and I'll show you two ways to do it in gretl.

13.1.1 Series Plots—constant and trends

Our initial impressions of the data are gained from looking at plots of
the two series. The data plots are obtained in the usual way after importing
the dataset. The data on U.S. and Australian GDP are found in the gdp.gdt
file and were collected from 1970:1 - 2004:4. Open the data and set the
data structure to quarterly time-series using the setobs 4 command, start
the series at 1970:1, and use the ——time-series option.

open C:\userdata\gretl\data\poe\gdp.gdt
setobs 4 1970:1 --time-series

One purpose of the plots is to help you determine whether the Dickey-Fuller
regressions should contain constants, trends or squared trends. The simplest
way to do this is from the console using the scatters command.

scatters usa diff(usa) aus diff(aus)

The scatters command produces multiple graphs, each containing one of
the listed series. The diff () function is used to take the differences of usa
and aus, which appear in the graphs featured in Figure 13.1 below.

This takes two steps from the pull-down menu. First, use the mouse
to highlight the two series and then create the differences using Add>First

LPOE refers to these variables as U and A, respectively.
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Figure 13.1: The levels of Australian and U.S. GDP appear to be nonstation-
ary and cointegrated. The difference plots have a nonzero mean, indicating
a constant in their ADF regressions.
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differences of selected variables. Then, select View>Multiple graphs>Time
series. Add the variables to the selected list box to produce Figure 13.1.

From the time series plots it appears that the levels are mildly parabolic
in time. The differences have a small trend. This means that the augmented
Dickey-Fuller (ADF) regressions need to contain these elements.

13.1.2 Selecting Lag Length

The second consideration is the specification of lags for the ADF regres-
sions. There are several ways to select lags and gretl automates one of
these. The basic concept is to include enough lags in the ADF regressions
to make the residuals white noise. These will be discussed presently.

Testing Down

The first strategy is to include just enough lags so that the last one is
statistically significant. Gretl automates this using the -—test-down option
for the augmented Dickey-Fuller regressions. Start the ADF regressions with
a generous number of lags and gretl automatically reduces that number until
the t-ratio on the longest remaining lag is significant at the 10 percent level.
For the levels series we start with a maximum lag of 6, include a constant,
trend, and trend squared (--ctt option), and use the -—test-down option.

adf 6 usa --ctt —--test-down
adf 6 aus —--ctt —--test-down

The result is shown in Figure 13.2. The --test-down option selected two
lags for the usa series and three for aus. Both ADF statistics are insignif-
icant at the 5% or 10% level, indicating they are nonstationary. This is
repeated for the differenced series using the commands:

adf 6 diff(usa) --ct --test-down
adf 6 diff(aus) --ct --test-down
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Figure 13.2: Based on ADF tests, the levels of Australian and U.S. GDP

are nonstationary.
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The selected lags for the U.S. and Australia are one and three, respectively.
Both ADF statistics are significant at the 5% level and we conclude that the
differences are stationary.

Testing Up

The other strategy is to test the residuals from the augmented Dickey-
Fuller regressions for autocorrelation. In this strategy you can start with
a small model, and test the residuals of the Dickey-Fuller regression for
autocorrelation using an LM test. If the residuals are autocorrelated, add
another lagged difference of the series to the ADF regression and test the
residuals again. Omnce the LM statistic is insignificant, you quit you are
done. This is referred to as testing-up.

To employ this strategy in gretl, you’ll have to estimate the ADF equa-
tions manually using the ols command. Since the data series has a constant
and quadratic trend, you have to define a time trend (genr time) and trend
squared (genr t2 = timextime) to include in the regressions. You will also
need to generate the differences to use in a new function called lags. The
script to do this follows:

genr time
genr t2 = time*time
genr d_usa = diff (usa)

Now, estimate a series of augmented Dickey-Fuller regressions using ols.
Follow each regression with the LM test for autocorrelation of the residuals
discussed in Chapter 9.

ols diff(usa) usa(-1) lags(1l,d_usa) const time t2 --quiet
Imtest 1 —--autocorr
ols diff(usa) usa(-1) lags(2,d_usa) const time t2 --quiet
Imtest 1 —-autocorr

The first ols regression is the ADF(1). It includes 1 lagged value of the d_usa
as a regressor in addition to the lagged value of usa, a constant, a trend, and
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a squared trend. Gretl’s lags(q,variable) function creates a series of lags
from 1 through q of variable. So in the first regression, lags(1,d_usa)
creates a single lagged value of d_usa. After the regression, use the Imtest 1
——autocorr to conduct the LM test of first order autocorrelation discussed
in Chapter 9. If the p-value is greater than .10 then this is your model.
If not, add another lag of d_usa using lags(2,d_usa) and repeat the test.
In this example, the ADF(2) produces residuals that are not autocorrelated
and ‘wins’ the derby.

In this code example we chose to suppress the results from the first
regression so that the output from the tests would fit on one page (Figure
13.3). In practice, you could skip this option and read the Dickey-Fuller
t-ratio directly from the output. The only disadvantage of this is that the
proper p-value for it is not computed using the manual approach.

If you repeat this exercise for aus (as we have done in the script at the
end of the chapter) you will find that testing up determines zero lags of
d_aus are required in the Dickey-Fuller regression; testing down revealed
three lags were needed. The incongruency occurs because we did a poor
job of testing up, failing to include enough autocorrelation terms in in the
LM test. This illustrates a danger of testing up. When we conducted the
LM test using only a single autocorrelation term, we had not searched far
enough in the past to detect significant autocorrelations that lie further
back in time. Adding terms to the autocorrelation test using lmtest 3
—-—autocorr resolves this.

So which is better, testing down or testing up? I think the econometric
consensus is that testing down is safer. We’ll leave it for future study!

13.1.3 Cointegration Test

Given that the two series are stationary in their differences (i.e., both
are 1(1)), the next step is to test whether they are cointegrated. In the
discussion that follows, we return to reproducing results from POEFE. To do
this, use least squares to estimate the following regression.

aus; = fusa; + e (13.1)
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Figure 13.3: Manually estimate the ADF regressions and use LM tests for
autocorrelation to determine the proper lag length.

retl: script output - |E||1|
BRES x
? ols diffiusa) usai-1) lags(l,d usa) const time ti --guiet .:J

? lmtest 1 --autocorr

Breusch-Godfrey test for first-order autocorrelation
OLS estimates using the 121 observations 1970:4-2000:4
Dependent wariasble: uhat

WVARIAELE COEFFICIENT STDERROR T STAT P-VALUE
const -2.09676 1.41054 -1.486 0.13597
usa_1 0.04509z22 0.0342477 1.317 0.15057
d usa_ 1 I Ia Of 0.858795 0.336339 2.553 0.01155 **
time ‘ g -0.00659375 0.00835085 -0.790 0.43139
tZ d usa -0.0001502592 9.38685E-05 -1.601 0.11z210
uhat_1 - -0.964336 0.364285 -2Z.647 0.00925 #*+%
Unadjusted R-sguared = 0.0574421
Test statistic: LMF = 7.003417,
with p-value = P{F(1,115) > 7.00842) = 0.00925 signiﬁcant
Alternative statistj TR*2Z = 6.950492, autocorrelation

with p-wvalue = P(Chj-square(l) > 6.95049) = 0.00338

Lijung-Box Q' = 0.4523Z4 with p-value = P(Chi-sguare(l) > 0.452324) = 0.501

? ols diffiusa) usai-1) lags(Z,d usa) const time ti --guiet
? lmtest 1 --autocorr

Breusch-Godfrey test for first-order autocorrelation
OLE estimstes using the 120 observations 1971:1-2000:4
Dependent wariasble: uhat

VARIAELE COEFFICIENT STDERROR T 3TAT P-VALUE
const -0.457542 1.64093 -0.278 0.75074
usa 1 0.01z21178 0.0403440 0.300 0.76445
d usa_ 1 2 Ia'gs of 0.212033 0.351573 0.603 0.54765
d usa 2 d usa -0.0665249 0.134242 -0.496 0.62117
time = -0.00436355 0.00949574 -0.459 0.64652
te -1.94450E-05 0.000103370 -0.188 0.55113
uhat_1 -0.239387 o.3gsve7? -0.616 0.53925

Unadjusted R-sguared = 0.00553086

Test statistic: LMF = 0.628464, Not significant:
with p-wvalue = P(F{1,113) > 0O. .
Use 2 lags in ADF

Alternative statistigh
with p-walue = P(Chi-=

TR*2 = 0.663704,
guare(l) > 0.663704) = 0.415

Lijung-EBox Q' = 0.0273827 with p-wvalue = P(Chi-square(l) > 0.0278827) = 0.567 j

Close |
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obtain the residuals, €;, and then estimate
Ay =vér—1 + ut (13.2)

This is the “case 1 test” from Chapter 12 of Hill et al. (2008) and the
5% critical value for the t-ratio is -2.76. The following script estimates
the model cointegrating regression, saves the residuals, and estimates the
regression required for the unit root test.

ols aus usa
genr uhat = $uhat
ols diff(uhat) uhat(-1)

The result is:

A& = —0.127937¢,_1 (13.3)
(0.044279)

T =123 R?=0.0640 F(1,122) = 8.3482 & = 0.5985

(standard errors in parentheses)

The t-ratio is —0.1279/.0443 = —2.889 which lies in the rejection region for
this test. Therefore, you reject the null hypothesis of no cointegration.

13.1.4 VECM

You have two difference stationary series that are cointegrated. Conse-
quently, an error correction model of the short-run dynamics can be esti-
mated using least squares. The error correction model is:

Aaus; = 11+ fi2éi—1 + vt (13.4)
Ausay = [o1 + [o2éi—1 + V2t (13.5)

and the estimates

Aaus; = 0.491706 + —0.0987029¢é;_4

(8.491) (—2.077)
Ausa; = 0.509884 + +0.0302501¢é; 1
(10.924) (0.790)

(t-statistics in parentheses)
which is produced using
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ols diff(aus) const uhat(-1)
ols diff(usa) const uhat(-1)

13.2 Vector Autoregression

The vector autoregression model (VAR) is actually a little simpler to
estimate than the VEC model. It is used when there is no cointegration
among the variables and it is estimated using time series that have been
transformed to their stationary values.

In the example from POE, we have macroeconomic data on GDP and
the CPI for the United States. The data are found in the growth.gdt dataset
and have already been transformed into their natural logarithms. In the
dataset, In (GDP) is referred to as G and In (C'PI) as P. As in the previous
example, the step is to determine whether the variables are stationary. If
they are not, then you transform them into stationary time series and test
for cointegration.

The data need to be analyzed in the same way as the GDP example.
Examine the plots to determine possible trends and use the ADF tests to
determine which form of the data are stationary. These data are nonstation-
ary in levels, but stationary in differences. Then, estimate the cointegrating
vector and test the stationarity of its residuals. If stationary, the series are
cointegrated and you estimate a VECM. If not, then a VAR treatment is
sufficient.

Open the data and take a look at the time series plots.

open C:\userdata\gretl\data\poe\growth.gdt
scatters G diff(G) P diff(P)

Next, estimate
In(GDP)y = 1 + Paln(CPI) + w (13.6)

using least squares and obtain the residuals, @;. Then, difference the least
squares residuals and estimate

Aly = a1 + aoti—1 + redidual, (13.7)
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again, using least squares. The t-ratio on ag is computed and compared
to the 5% critical value tabled in POE (Table 12.3), which is -3.37. The
computed value of the statistic is -.97, which is not in the rejection region
of the test; we conclude that the residuals are stationary which means that
G and P are not cointegrated. The script that accomplishes this is

ols G const P
series uhat = $uhat
ols diff(uhat) uhat(-1)

You could use the built-in command for the augmented Dickey-Fuller
regressions adf to obtain the t-ratio on the lagged residual. Unfortunately,
the critical values produced by the automatic routine does not take into
account that the regressors are estimated residuals and they are not valid
for the Engle-Granger test of cointegration. If you choose to use the adf
command, be sure to use the the --nc no constant option in this case.

adf O uhat --nc --verbose

The --verbose option tells gretl to print the actual regression results from
the Dickey-Fuller test. The regression results will match those you obtained
using the manual method above. Ignore the p-value for the Dickey-Fuller
since the regressors are residuals. Since G and P are not cointegrated, a
vector autoregression model can be estimated using the differences.

The script to estimate a first order VAR appears below:

var 1 diff(P) diff(G)

The diff () function is used to take the first differences of the time series
and can be used in the var command. The command var 1 tells gretl to
estimate a VAR of order 1, which means lag the right-hand-side variable one
period. Then list the variables to include on the right-hand side.

In practice, you might want to explore whether the order of the VAR
(number of lags on the right-hand side) are sufficient. This can be done using
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the --lagselect option in the var statement. You start the VAR with
a relatively long lag length and gretl estimates each successively smaller
version, computing various goodness-of-fit measures. Gretl then tells you
which is the optimal lag length based on each criterion. For instance, starting
the VAR at 8 lags and using --lagselect is accomplished by:

var 8 diff(G) diff(P) --lagselect

You can also get gretl to generate this command through the dialogs. Select
Model>Time series>VAR lag selection from the pull-down menu. This
reveals the VAR lag selection dialog box. You can choose the maximum lag
to consider, the variables to include in the model, and whether the model
should contain constant, trend, or seasonal dummies. The output is:

? var 8 diff(G) diff(P) --lagselect
VAR system, maximum lag order 8

The asterisks below indicate the best (that is, minimized) values
of the respective information criteria, AIC = Akaike criterion,
BIC = Schwartz Bayesian criterion and HQC = Hannan-Quinn criterion.

lags loglik p(LR) AIC BIC HQC
1 1273.78393 -14.827882 -14.717648 -14.783154
2 1277.61696 0.10461 -14.825929 -14.642206 -14.751382
3 1300.25039 0.00000 -15.043864* -14.786652*% —14.939498%*
4 1303.30981 0.19045 -15.032863 -14.702162 -14.898679
5 1306.32104 0.19748 -15.021299 -14.617108 -14.857295
6 1311.53702 0.03375 -15.035521 -14.557841 -14.841699
7 1313.40649 0.44249 -15.010602 -14.459433 -14.786961
8 1315.11728 0.48990 -14.983828 -14.359170 -14.730368

The AIC, BIC, and HQC criteria each select a VAR with 3 lags.

Obtaining the impulse responses is easy in gretl. The first step is
to estimate the VAR. From the main gretl window choose Model>Time
series>Vector Autoregression. This brings up the dialog, shown in Fig-
ure 13.4. Set the lag order to 1, and add the differenced variables to the box
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Figure 13.4: From the main gretl window, choose Model>Time
series>Vector Autogregression to bring up this VAR dialog box.

=

ViR
i3 i lag order: |1 @
p
d_G Endogenous variables
d_F 4P
uhat de
d_uhat Add -= -

=- Remove |

Exogenous variables

add - =
=- Remove

la@s. .,

[T Robust standard errors  configure |

¥ Include a constant

[T Include atrend

[T Include seasonal dummies

ﬂelp | %glear | & Cancel
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labeled Endogenous Variables. Make sure the ‘Include a constant’ box is
checked and click OK.

The results are shown in Figure 13.5. You can generate impulse responses
by selecting Analysis>Impulse responses from the results window. This
will produce the results shown in Figure 13.6.

These can be graphed for easier interpretation from the results window
by selecting Graphs>Impulse responses (combined) from the pull-down
menu. The graph is shown in Figure 13.7. This yields the graph shown in
Figure 13.8.

The forecast error variance decompositions (FEVD) are obtained simi-
larly. Select Analysis>Forecast variance decomposition from the vec-
tor autoregression model window to obtain the result shown in Figure 13.9.
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Variable
const
d-P;
d-Gy_1

Variable
const
d_Py_q
d-G¢q

Figure 13.5: VAR results

VAR system, lag order 1
OLS estimates, observations 1960:3-2004:4 (7' = 178)

Equation 1: d_P

Coefficient Std. Error t-statistic
0.00143280 0.000710432 2.0168
0.826816 0.0447068 18.4942
0.0464420 0.0398581 1.1652

Sum of squared residuals 0.00347709

Standard error of residuals (&) 0.00445747

Unadjusted R? 0.667250

Adjusted R? 0.663447

F(2,175) 175.460
Equation 2: d_G

Coefficient Std. Error t-statistic

0.00981441 0.00125091 7.8458

—0.326952 0.0787188 —4.1534
0.228505 0.0701813 3.2559
Sum of squared residuals 0.0107802
Standard error of residuals (&) 0.00784863
Unadjusted R? 0.168769
Adjusted R? 0.159269
F(2,175) 17.7656

229

p-value

0.0452
0.0000
0.2455

p-value

0.0000
0.0001
0.0014



CHAPTER 13. INTRODUCTION TO MACROECONOMETRICS 230

Figure 13.6: Impulse Response Functions

Responses to a one-standard error shock in d_G

period d_.G d_p
1 0.00778221  0.000358053
2 0.00166121  0.000657465
3 0.000164635 0.000620753
4 —0.000165336  0.000520894
5 —0.000208088  0.000423005
6 —0.000185852  0.000340084
7 —0.000153659  0.000272555
8 —0.000124224 0.000218217
9 —9.97324e-005 0.000174656

10 —7.98936e-005 0.000139777

11 —6.39564e-005  0.000111859
12 —5.11870e-005 8.95168e-005

Responses to a one-standard error shock in d_P

period d_.G d_pP
1 0.000000  0.00440523
2 —0.00144030  0.00364231
3  —0.00151998  0.00294463
4 —0.00131008  0.00236408
5 —0.00107230  0.00189382
6 —0.000864213  0.00151604
7 —0.000693149  0.00121335

8 —0.000555095 0.000971026
9 —0.000444321 0.000777080
10 —0.000355598 0.000621867
11 —0.000284577 0.000497655
12 —0.000227737 0.000398253



CHAPTER 13. INTRODUCTION TO MACROECONOMETRICS 231

Figure 13.7: Select Graphs>Impulse
results window.
g

retl: vector autoregression

responses (combined) from the VAR

=l0lx|

File Edit Tests Analysis Save LaTek

Reesidual plats s
Combined residual plot
WAR inwerse roots

VAR system, lag or
QLS estimates, ohsel

Log-likelihood = 13
Determinant of cow:
AIC = -14.8180
BIC -14.7113
HQC -14.7751

Response of d_P
Response of d_G

Equation 1: d P

VARIABLE COEFFICIENT STDERRCE T STAT P-VALUE

0.00143z280

0.8Z6516
0.0464420

0.000710432
0.0447068
0.0398551

2.017
15.494
1.165

Sum of sguared residuals = 0.00347709

Standard error of residuals = 0.00445747
Unadjusted RB-sguared = 0.66725

bdjusted R-squared = 0.66353447

F-statistic (2, 175) = 175.46 (p-wvalue < 0.00001)
Durbin-Watson statistic = 2.19462

Close

0.04525 =+

<0.00001
0.24553

EEEd

13.3 Script

#VECM example
open C:\userdata\gretl\data\poe\gdp.gdt

#Declare the data to be time series

setobs 4 1970:1 --time-series

#Analyze the plots for constants and trends
scatters usa diff(usa) aus diff (aus)

#Testing down with ADF

adf 6 usa —--ctt —--test-down
adf 6 aus --ctt —--test-down
adf 6 usa --difference —--ct —--test-down
adf 6 aus —--difference --ct --test-down
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Figure 13.8: U.S. In(GDP) and In(CPI) impulse responses

4 gretl: gnuplot graph -0 =]
d_P->d_P d_P->dG
0.0045 — . . . " 0.001 T T T T T
0004 N E )
\ L J
0.0035 - N 1 0.0005 \
0.003 | N ] 0 fee e
0.0025 | ™ i . —
0.002 | \ J ) Mo _— 1
N 4 - L II - 4
0.0015 ~ 0.001 \ /
0.001 F i .
— B L — J
0.0005 | o 00013
o L L L L L -0.002 L L L L L
0 2 4 6 8 10 12 0 2 4 5 8 10 12
periods periods
d_G->d_P d_G->d_G
0.0004 T T T T 0.008 — T T T T
0.00035 | ;'/\\ ooo7 b | i
0.0003 ‘u' \\ 1 0.006 ".I 1
000025 | | AN - 0.00% \ 1
| 0.004 F | 1
0.0002 b | g |
[ . ooo3 b | 1
0.00015 | | N 1 0002 | '.\ |
0.0001 | “\.______7____ 0.001 F ‘\\ 9
5e-005 | E i) PR S —
0 ! 1 1 1 L 1 _0001 L 1 1 1 1
i 2 4 6 B 10 12 i 2 4 6 8 10 12
periods periods
|C|ick on graph far pop-up menu

#Testing up (manually for usa)
genr time

genr t2 = time*time

genr d_usa = diff(usa)

genr d_aus = diff (aus)

ols diff(usa) usa(-1) const time t2

Imtest 1 --autocorr

ols diff(usa) usa(-1) lags(1l,d_usa) const time t2 --quiet
Imtest 1 -—autocorr

ols diff(usa) usa(-1) lags(2,d_usa) const time t2 --quiet
Imtest 1 —-—autocorr

#This test can be misleading: not enough AR terms in LM test
ols diff(aus) aus(-1) const time t2
Imtest 1 --autocorr

#Be sure to test for enough AR terms in the LM test!
ols diff(aus) aus(-1) const time t2

232
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Figure 13.9: Forecast Error Variance Decompositions

Decomposition of variance for d_G

period

0 O U W N

[ =
N = OO

std. error
0.00778221
0.00808683
0.00823008
0.00833534

0.0084066
0.00845295
0.00848272
0.00850177
0.00851395
0.00852175
0.00852674
0.00852994

d-G
100.0000
96.8279
93.5265
91.2187
89.7399
88.8068
88.2175
87.8440
87.6064
87.4550
87.3582
87.2964

d_P
0.0000
3.1721
6.4735
8.7813

10.2601
11.1932
11.7825
12.1560
12.3936
12.5450
12.6418
12.7036

Decomposition of variance for d_P

period

0 ~J O T i Wi

[ S
NN = OO

std. error
0.00441975

0.0057648
0.00650301
0.00693897
0.00720519
0.00737081
0.00747498
0.00754094
0.00758289
0.00760963

0.0076267
0.00763762

d-G
0.6563
1.6865
2.2365
2.5278
2.6891
2.7825
2.8385
2.8728
2.8941
2.9076
2.9161
2.9215

d_-P
99.3437
98.3135
97.7635
97.4722
97.3109
97.2175
97.1615
97.1272
97.1059
97.0924
97.0839
97.0785
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Imtest 3 -—autocorr
ols diff(aus) aus(-1) lags(l,d_aus) const time t2 --quiet
Imtest 3 -—autocorr
ols diff(aus) aus(-1) lags(2,d_aus) const time t2 --quiet
Imtest 3 ——autocorr
ols diff(aus) aus(-1) lags(3,d_aus) const time t2 --quiet
Imtest 3 ——autocorr

#Cointegration test
ols aus usa

genr uhat = $uhat

ols diff(uhat) uhat(-1)
adf O uhat --nc

#VECM
ols diff(aus) const uhat(-1)
ols diff(usa) const uhat(-1)

#Growth example
open C:\userdata\gretl\data\poe\growth.gdt

#Analyze the plots
scatters G diff(G) P diff(P)

#Cointegration test
ols G const P

series uhat = $uhat
ols diff(uhat) uhat(-1)

adf 3 uhat --nc --test-down --verbose
adf 0 uhat --nc --verbose

#VAR
var 1 diff(P) diff(G)

#Using lagselect
var 8 diff(G) diff(P) --lagselect

#Estimate the VAR with IRFs and FEVDs
var 1 diff(P) diff(G) --impulse-responses --variance-decomp

234



oo 14

Time-Varying Volatility and ARCH
Models: Introduction to Financial
Econometrics

In this chapter we’ll estimate several models in which the variance of
the dependent variable changes over time. These are broadly referred to as
ARCH (autoregressive conditional heteroskedasticity) models and there are
many variations upon the theme.

14.1 ARCH and GARCH

The basic ARCH(1) model can be expressed as:

Yy = Pte (14.1)
6t|It71 ~ N(O, ht) (142)
hy = oo+ alef_l ag > 0, 0<a; <1 (14.3)

The first equation describes the behavior of the mean of your time series.
In this case, equation (14.1) indicates that we expect the time series to vary
randomly about its mean, 3. If the mean of your time series drifts over time

235
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or is explained by other variables, you’d add them to this equation just as
you would a regular regression model. The second equation indicates that
the error of the regression, e;, are normally distributed and heteroskedastic.
The variance of the current period’s error depends on information that is
revealed in the preceding period, i.e., I;_1. The variance of e; is given the
symbol h;. The final equation describes how the variance behaves. Notice
that h; depends on the error in the preceding time period. The parameters in
this equation have to be positive to ensure that the variance, h;, is positive.

The ARCH(1) model can be extended to include more lags of the errors,
ei—q- In this case, g refers to the order of the ARCH model. For example,
ARCH(2) replaces (14.3) with hy = ag + aref_; + aze? ,. When estimating
regression models that have ARCH errors in gretl, you’ll have to specify
this order.

ARCH is treated as a special case of a more general model in gretl
called GARCH. GARCH stands for generalized autoregressive conditional
heteroskedasticity and it adds lagged values of the variance itself, h;_p, to
(14.3). The GARCH(1,1) model is:

y = Pte (14.4)
6t|It,1 ~ N(O, h,t) (145)
h = S+ aiefy+ Bl (14.6)

The difference between ARCH (14.3) and its generalization (14.6) is a term
B1hi—1, a function of the lagged variance. In higher order GARCH(p,q)
model’s, ¢ refers to the number of lags of e; and p refers to the number of
lags of h; to include in the model of the regression’s variance.

To open the dialog for estimating ARCH and GARCH in gretl choose
Model>Time series>GARCH from the main gretl window as shown in Figure
14.1 below.!

To estimate the ARCH(1) model, you'll place the time series r into the
dependent variable box and set =1 and p=0 as shown in Figure (14.2) This

In a later version of gretl , and ARCH option has been added. You can use this as
well, but the answer you get will be slightly different due to differences in the method
used to estimate the model.
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Figure 14.1: Choose Model>Time series>GARCH from the main gretl win-

dow.
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Figure 14.2: Estimating ARCH using the dialog box in gretl .
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yields the results:

7 = 1.06394
(26.886)

hy = 0.642139 + 0.569347 €2,
(9.914) (6.247)

T =500 InL=-740.7932 & =1.2211

(t-statistics in parentheses)

To estimate the GARCH(1,1) model, set p=1 and gq=1 to obtain:

T = 1.04987
(0.040465)
62 = 0.40105 4 0.491028 2 | + 0.237999 02,
(0.089941) (0.10157) (0.1115)

T =500 InL=-736.0281 & = 1.2166

(standard errors in parentheses)

You will notice that the coefficient estimates and standard errors for the
ARCH(1) and GARCH(1,1) models are quite close to those in Chapter 14
of your textbook. To obtain these, you will have to change the default
variance-covariance computation using set garch vcv op before running
the script. Although this gets you close the the results in POF, using the
garch_vcv op is not usually recommended; just use the gretl default, set
garch_vcv unset.

The standard errors and t-ratios often vary a bit, depending on which
software and numerical techniques are used. This is the nature of maximum
likelihood estimation of the model’s parameters. With maximum likelihood
estimation the model’s parameters are estimated using numerical optimiza-
tion techniques. All of the techniques usually get you to the same parameter
estimates, i.e., those that maximize the likelihood function; but, they do so
in different ways. Each numerical algorithm arrives at the solution itera-
tively based on reasonable starting values and the method used to measure
the curvature of the likelihood function at each round of estimates. Once
the algorithm finds the maximum of the function, the curvature measure is
reused as an estimate of the variance covariance matrix. Since curvature
can be measured in slightly different ways, the routine will produce slightly
different estimates of standard errors.

Gretl gives you a way to choose which method you like use for estimating
the variance-covariance matrix. And, as expected, this choice will produce
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different standard errors and t-ratios. The set garch_vcv command allows
you to choose among five alternatives: unset—which restores the default,
hessian, im (information matrix) , op (outer product matrix), qml (QML
estimator), or bw (Bollerslev-Wooldridge). If unset is given the default is
restored, which in this case is the Hessian; if the ”"robust” option is given
for the garch command, QML is used.

14.2 Testing for ARCH

Testing for the presence of ARCH in the errors of your model is straight-
forward. In fact, there are at least two ways to proceed. The first is to esti-
mate the regression portion of your model using least squares. Then choose
the Tests>ARCH from the model’s pull-down menu. This is illustrated in
Figure 14.3 below.

Figure 14.3: Choose Tests>ARCH from the model’s pull-down menu.

/& gretl: model 4 1Ol x|
File Edit I@ Save @raphs Analysis  LaTex
omit variables -
Model 4| Addvariables ing the 500 ohservations 1-500 o

Dependey U of coefficients

Linear restrictions

V. N ; FICIENT STDERRCR T STAT P-VALUE
MonHinearity (squates)

congt | Handinearty (ags) .078z9 0.0529959 20,347 <0.00001 #%%
Ramsey's RESET

Hean Heteroskedasticity: pfole = 1.07829

Stand: Mormality of residual ep. wvar. = 1.18502

Sum o Influential observations § = 700.737

Stand olinsaricy uals = 1.18502

TUnadijl = a

Adjus1 Aukocorrelation

Degreq =]

Durbif chow test = 1.91897

First &LRtest tion coeff. = 0.0377057
i;glllc CLISUM test Ziion {AIC) = 1589.7
Sohma] T2 test ion (BIC) = 1593.92
Hannay Panel diagnostics (HQC) = 1591.35 e

Close

This brings up the box where you tell gretl what order of ARCH(q) you
want as your alternative hypothesis. In the example, ¢ = 1 which leads to
the result obtained in the text. The output is shown below in Figure 14.5.
Gretl produces the LM statistic discussed in your text; the relevant part is
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highlighted in red.

Figure 14.4: Testing ARCH dialog box
gretl: ARCH test - 0| x|

Lag order For ARCH kest: I @

HE|F' | M Cancel

Figure 14.5: ARCH test results
¥ gretl: ARCH test =10l x|

[+]

Test for ARCH of order 1
OLS estimates using the 499 obserwvations 2-500
Dependent variable: ut®Z

WARIAELE COEFFICIENT STDERROR T 3ZTAT P-VALUE
COnst 0.905262 0.124401 7.301 <0.00001 *%%
uc*z (-1) 0.353071 0.0419545 §.410 <0.00001 *#+%#
No of obs. = 499, unadjusted R*"Z = 0.124568

LM test statistic (62.159501) is distributed &5 Chi-sguare (1)
Area to the right of LM = 0.000000
ARCH effect is significant at the 10 percent lewvel.

WLS (ARCH) estimates using the 499 chservations 2-500
Dependent variable: r_byd
Variable used as weight: 1/sigma

WARIAELE COEFFICIENT STDEREOR T STAT P-VALUE
COnst 1.03259 0.0466975 22.112 <0.00001 #*##
Ad
Close |

The other way to conduct this test is manually. The first step is to
estimate the regression (14.1) using gretl . Save the squared residuals and
then regress these on their lagged value. Take TR? from this regression as
your test statistic. The script for this appears below:

open c:\userdata\gretl\data\poe\BYD.gdt

ols r const
series ehat = $uhat
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series ehat2 = ehat*ehat
ols ehat2 const ehat2(-1)
scalar tr2 = $trsq

The first line estimates the regression
re =P+ e (147)

The residuals are saved in ehat and then squared as ehat2. The next line
estimates the regression

ét =1 + Oégét_l + U (148)

The notation ehat2(-1) takes the variable ehat2 and offsets it in the dataset
by the amount in parentheses. In this case, ehat2(-1) puts a minus one
period lag of ehat2 into your regression. The final line computes T'R? from
the regression.

14.3 Simple Graphs

There are several figures that you can produce with gretl and gnuplot
. One useful graph is a histogram of the time series you are studying. The
easiest way to get this is through the pull-down menus. In Figure 14.6 you’ll
find a histogram of the Brighten Your Day returns. A normal density is
superimposed on the series. Selecting Variable>Frequency plot>against
Normal from the pull-down menu opens a small dialog box that allows you
to control how the histogram looks. You can choose the number of bins,
which in this case has been set to 23 (Figure 14.7). Click OK and the result
appears in Figure 14.8.

Once you’ve estimated your ARCH or GARCH model, you can graph the
behavior of the variance as done in the textbook. After estimating ARCH
or GARCH, you can save the predicted variances using the command genr
ht = $h. Then plot them using gnuplot ht time. The result is shown in
Figure 14.9. A prettier plot can be obtained using the pull-down menus or
by editing the plot yourself. To modify the graph, right click on the graph
and choose edit. From here you can add labels, titles or replace the crosses
with lines. That’s what I have done to produce the result in Figure 14.10.
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Figure 14.6: Highlight the desired series using your cursor, then choose
Variable>Frequency plot>against Normal from the pull-down menu

% ored =10l x|
| File Tools Data Wiew Add Sample Help |
BVD.qdt (4 Eind... Chrl+F
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1
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3 gam 1 Estimated density plat. .. Against Marmal
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6 dela = Range-mean graph
7 theta 0.1 Time series plot
Correlogram
Spectrum 4
Augmented Dickey-Fuller test
KPSS test
Filter L4

#-12-ARIME analysis
TRAMC analysis
Hursk exponent

Edit attributes
Set missing walue code. ..

Defing new variablz. ..

Time series: Full range 1 - 500

@ || o|m| @3 el &S]

Figure 14.7: Choosing Variable>Frequency plot>against Normal from
the pull-down menu reveals this dialog box.
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" Minimum value, left bin: |—2.991 E
Bir width: IEI.444 E

Pox
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Figure 14.8: The histogram produced using the dialogs from the pull-down
menu in gretl.
=loix|
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Figure 14.9: Plot of the variances after estimating the GARCH(1,1) using
the BrightenYourDay returns. Right click on the graph to bring up the
menu shown. Then choose edit to modify your graph.
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Figure 14.10: Plot of the variances after estimating the GARCH(1,1) using
Brighten Your Day’s returns
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14.4 Threshold ARCH

Threshold ARCH (TARCH) can also be estimated in gretl, though it
requires a little programming; there aren’t any pull-down menus for this es-
timator. Instead, we’ll introduce gretl’s powerful mle command that allows
user defined (log) likelihood functions to be maximized.

The threshold ARCH model replaces the variance equation (14.3) with

he =6+ el | +ydi_1el | + Bihiq (14.9)
. 1 ife <0
i = { 0 otherwise (14.10)

The model’s parameters are estimated by finding the values that maximize
its likelihood. Maximum likelihood estimators are discussed in appendix C
of Hill et al. (2008).

Gretl provides a fairly easy way to estimate via maximum likelihood
that can be used for a wide range of estimation problems (see Chapter 16
for other examples). To use gretl’s mle command, you must specify the
log-likelihood function that is to be maximized. Any parameters contained
in the function must be given reasonable starting values for the routine to
work properly. Parameters can be declared and given starting values (using
the genr command).

Numerical optimization routines use the partial derivatives of the objec-
tive function to iteratively find the minimum or maximum of the function.
If you want, you can specify the analytical derivatives of the log-likelihood
function with respect to each of the parameters in gretl; if analytical deriva-
tives are not supplied, gretl tries to compute a numerical approximation.
The actual results you obtain will depend on many things, including whether
analytical derivatives are used and the starting values.

For the threshold GARCH model, open a new script file and type in the
program that appears in Figure 14.11.

The first few lines of the script gives starting values for the parameters.
The second part of the script contains the the algebraic expression of the
likelihood function. The first line 11 = -0.5%(log(h) + (e"2)/h) is what
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Figure 14.11: Threshold GARCH script
open c:\userdata\gretl\data\poe\BYD.gdt
scalar mu = 0.5

scalar omega = .b
scalar

o
[
el
=2
)
nn
o O
=D

scalar delta
scalar beta = 0

mle 11 = -0.5%(log(h) + (e~2)/h)
series h = var(r)
series e = r - mu
series e2 = e"2
series e2m = e2 * (e<0)
series h = omega + alpha*e2(-1) + delta*e2m(-1) + betaxh(-1)
params mu omega alpha delta beta
end mle

is called the kernel of the normal probability density function. Recall that
the errors of the ARCH model are assumed to be normally distributed and
this is reflected in the kernel. Next, we have to specify an initial guess for
the variances of the model, and these are set using var (r). Then, the errors
are generated, squared, and the threshold term is created using series e2m
= e2 * (e<0); the expression (e<0) takes the value of 1 for negative errors,
e, and is zero otherwise. Then, the heteroskedastic function h; is specified.
The parameters of the model are given at the end, which also tells gretl to
print the estimates out once it has finished the numerical optimization. The
mle loop is ended with end mle. The output appears in Figure 14.12. The
coefficient estimates are very close to those printed in your text, but the
standard errors and corresponding t-ratios are quite a bit different. This is
not that unusual since different pieces of software that no doubt use different
algorithms were used to numerically maximize the log-likelihood function.
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Figure 14.12: Threshold ARCH results
“gretl: script output E]@
B QR ES x

? params i omegas alpha delta beta
? end mle

Using numerical derivatives
Tolerance = 1.51599e-012

Function evaluations: 62
Evaluations of gradient: 19

Model 1: ML estimates using the 500 observations 1-500
11 = -0.5%({logih) + (e*2)/h)
Standard errors bhased on Outer Products matrix

PARLMETER ESTIMATE STDEREROR T STAT P-VALUE
mu 0.995256 0.0429403 23.177 <0.00001 #**
Ome e 0.356063 0.0900963 3.952 0.00005 *##*+
alpha 0.263252 0.0805590 3.267 0.00109 *#*+
delta 0.490534 0.204455 Z2.399 0.01643 **
heta 0.2586870 0.115475 Z.454 0.01z2598 **
Log-likelihood = -271.116
Akaike information criterion (AIC) = 552.232
Schwarz Bayesian criterion (BIC) = 573.305
Hannan-Quinn criterion (HQZC) = 560.501

14.5 Garch-in-Mean

The Garch-in-mean (MGARCH) model adds the equation’s variance to
the regression function. This allows the average value of the dependent
variable to depend on volatility of the underlying asset. In this way, more
risk (volatility) can lead to higher average return. The equations are listed
below:

ye = Po + Ohi + e (14.11)
hy =0+ aref | +ydi—1€f_1 + Brhi—1 (14.12)

Notice that in this formulation we left the threshold term in the model. The
errors are normally distributed with zero mean and variance h;.

The parameters of this model can be estimated using gretl, though the
recursive nature of the likelihood function makes it a bit more difficult. In
the script below (Figure 14.13) you will notice that we’ve defined a function
to compute the log-likelihood.?2 The function is called gim filter and it

2 Actually, gretl genius Professor ‘Jack’ Lucchetti wrote the function and I'm very
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contains eight arguments. The first argument is the time series, y. Then,
each of the parameters is listed (mu, theta, delta, alpha, gam, and beta)
as scalars. The final argument is a placeholder for the variance, h, that is
computed within the function.

Once the function is named and its arguments defined, you need to
initiate series for the variances and the errors; these have been called 1h
and le, respectively. The log-likelihood function is computed using a loop
that runs from the second observation through the last. The length of the
series can be obtained using the saved result $nobs, which is assigned to the
variable T.

Gretl’s loop syntax is fairly simple, though there are several variations.
In this example the loop is controlled using the special index variable, i. In
this case you specify starting and ending values for i, which is incremented
by one each time round the loop. In the TGARCH example the loop syntax
looks like this:

loop for i=2..T --quiet

end loop

The first line start the loop using an index variable named i. The first value
of iis set to 2. The index i will increment by 1 until it reaches T, which has
already been defined as being equal to $nobs. The end loop statement tells
gretl the point at which to return to the top of the loop and advance the
increment i. The -—quiet option just reduces the amount of output that is
written to the screen.

Within the loop itself, you’ll want to lag the index and create an indicator
variable that will take the value of 1 when the news is bad (e;—1 < 0).
The next line squares the residual. 1h[i] uses the loop index to place the
variance computation from the iteration into the i*” row of 1h. The line
that begins 1le[i]= works similarly for the errors of the mean equation.

The variances are collected in h and the residuals in le, the latter of

grateful!
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which is returned when the function is called. The function is closed using
end function.

If this looks too complicated, you can simply highlight the code with
your cursor, copy it using Ctrl-C, and paste it into a gretl script file (or use
the scripts provided with this book).

Once the function is defined, you need to initialize each parameter just
as you did in TGARCH. The series that will eventually hold the variances
also must be initialized. The latter is done using series h = NA, which
creates the series h and fills it with missing values (NA). The missing values
for observations 2 through T are replaced as the function loops.

Next, the built-in mle command is issued and the normal density kernel
is specified just as it was in the TGARCH example. Then, use the predefined
e=gim filter( ) function, putting in the variable r for the time series, the
initialized parameters, and &h as a pointer to the variances that will be
computed within the function. Issue the params statement to identify the
parameters and have them print to the screen. Close the loop and run the
script. The results appear in Figure 14.14 below. This is a difficult likelihood
to maximize and gretl may take some time to compute the estimates. Still,
it is quite remarkable that we get so close using a free piece of software and
the numerical derivatives that it computes for us. I'm impressed!
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Figure 14.13: The MGARCH script includes a function to compute the
log-likelihood.

function gim_filter(series y, \
scalar mu, scalar theta, scalar delta, scalar alpha, \
scalar gam, scalar beta, series *h)

series 1h = var(y)

y - mu

series le

scalar T = $nobs

loop for i=2..T --quiet
scalar ilag = $i - 1
scalar d = (le[ilag]<0)
scalar e2lag = le[ilag]~2

1h[i] = delta + alpha*e2lag + gam*e2lag*d + betaxlh[ilag]
le[i] = 1le[i] - thetax*1lh[i]
end loop

series h = 1h
return series le

end function
open c:\userdata\gretl\data\poe\BYD.gdt

scalar mu = 0.8
scalar gam
scalar alpha = 0.4
scalar beta = 0
scalar delta = .5
scalar theta = 0.1

I
[y

series h = NA

mle 11 = -0.5%(log(2*pi) + log(h) + (e~2)/h)
e = gim_filter(r, mu, theta, delta, alpha, gam, beta, &h)
params mu theta delta alpha gam beta

end mle —--robust
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Figure 14.14: Garch-in-mean results

Ed gretl: script output

BEX]

BeabDR B *

? end mle --robust

Using numerical derivatives
Tolerance = 1.51859%e-012
Function evaluations: 104
Evaluations of gradient: 24

Model 1: ML estimates using the 500 chservations 1-500
11 = -0.5%({log(2*%*pi) + logi(h) + (e*Z)/h)
QML standard errors

PARAMETER ESTIMATE STDERRCR T STAT
mu 0.514457 0.0677442 1z.023
theta 0.200501 0.0610628 3.288
delta 0.370791 0.0655594 5.630
alpha 0.296654 0.0735616 4,033
oan 0.313666 0.125515 Z.441
heta 0.279000 0.0544586 5.123
Log-likelihood = -724.461
Akaike information criterion (AIC) = 1460.92
Schwarz Bayesian criterion (BIC) = 1486.21
Hannan-guinn criterion (HQC) = 1470.84
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14.6 Script

open c:\userdata\gretl\data\poe\BYD.gdt

# ARCH(1) Using built in command for ARCH
arch 1 r const

# GARCH(0,1)=ARCH(1)
garch 0 1 ; r const

# GARCH(1,1)
garch 1 1 ; r const

#LLM test for ARCH
ols r const
Imtest 1 —--arch

#LM test manually
ols r const

253
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series ehat = $uhat
series ehat2 = ehat*ehat
ols ehat2 const ehat2(-1)
scalar tr2 = $trsq

#Plotting

garch 1 1 ; r const
genr ht = $h
gnuplot ht time

#Threshold Garch
open c:\userdata\gretl\data\poe\BYD.gdt

scalar mu = 0.5

scalar omega = .5
scalar alpha = 0.4
scalar delta = 0.1

scalar beta = 0

mle 11 = -0.5%(log(h) + (e~2)/h)
series h = var(r)
series e = r - mu
series e2 = e"2
series e2m = e2 * (e<0)

254

series h = omega + alpha*e2(-1) + delta*e2m(-1) + betaxh(-1)

params mu omega alpha delta beta
end mle

#Garch in Mean
function gim_filter(series y, \

scalar mu, scalar theta, scalar delta, scalar alpha, \

scalar gam, scalar beta, series *h)

series lh = var(y)

series le = y - mu

scalar T = $nobs

loop for i=2..T --quiet
scalar ilag = $i - 1
scalar d = (lelilag]<0)
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scalar e2lag = lel[ilag]~2
1h[i] = delta + alphak*e2lag + gam*e2lag*d + beta*lh[ilag]
le[i] = le[i] - thetaxlh[i]

end loop

series h = 1h
return series le

end function
open c:\userdata\gretl\data\poe\BYD.gdt

scalar mu = 0.8
scalar gam = .1
scalar alpha = 0.4
scalar beta = 0
scalar delta
scalar theta

non
o -
o

.1
series h = NA

mle 11 = -0.5%(log(2*pi) + log(h) + (e~2)/h)
e = gim_filter(r, mu, theta, delta, alpha, gam, beta, &h)
params mu theta delta alpha gam beta

end mle --robust



e 1D

Pooling Time-Series and
Cross-Sectional Data

A panel of data consists of a group of cross-sectional units (people, firms,
states or countries) that are observed over time. Following Hill et al. (2008)
we will denote the number of cross-sectional units by N and the number of
time periods we observe them as T.

Gretl gives you easy access to a number of useful panel data sets via its
database server.! These include the Penn World Table and the Barro and
Lee (1996) data on international educational attainment. These data can
be installed using File>Databases>0n database server from the menu
bar as shown in Figure 15.1 below. From here, select a database you want.
In Figure 15.2 the entry for the Penn World Table is highlighted. To its
right, you are given information about whether that dataset is installed on
your computer. Double click on pwtna and a listing of the series in this
database will appear in a new window. From that window you can search
for a particular series, display observations, graph a series, or import it. This
is a VERY useful utility, both for teaching and research and I encourage you
to explore what is available on the gretl server.

“Your computer must have access to the internet to use this.

256
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Figure 15.1: Accessing data from the database server via the pull-down
menus

i eret M=%
File  Tools Help
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15.1 A Basic Model

The most general expression of linear regression models that have both
time and unit dimensions is seen in equation 15.1 below.

Yit = Brit + Boit®it + B3itT3it + €t (15.1)

where ¢ = 1,2,...,N and ¢t = 1,2,...,7. If we have a full set of time
observations for every individual then there will be NT total observations
in the sample. The panel is said to be balanced in this case. It is not
unusual to have some missing time observations for one or more individuals.
When this happens, the total number of observation is less than NT and
the panel is unbalanced.

The biggest problem with equation (15.1) is that even if the panel is
complete (balanced), the model contains 3 times as many parameters as
observations (NT)! To be able to estimate the model, some assumptions have
to be made in order to reduce the number of parameters. One of the most
common assumptions is that the slopes are constant for each individual and
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Figure 15.2: Installing a data from the database server via the pull-down

menus

ﬂ gretl: databases on server
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Federal Housing Finance Board {mortgages)
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every time period; also, the intercepts vary only by individual. This model
is shown in equation (15.2).

Yit = Pri + Bawair + B33i + e (15.2)

This specification, which includes N + 2 parameters, includes dummy vari-
ables that allow the intercept to shift for each individual. By using such
a model you are saying that over short time periods there are no substan-
tive changes in the regression function. Obviously, the longer your time
dimension, the more likely this assumption will be false.

In equation (15.2) the parameters that vary by individual are called in-
dividual fixed effects and the model is referred to as one-way fixed
effects. The model is suitable when the individuals in the sample differ
from one another in a way that does not vary over time. It is a useful
way to avoid unobserved differences among the individuals in your sample
that would otherwise have to be omitted from consideration. Remember,
omitting relevant variables may cause least squares to be biased and incon-
sistent; a one-way fixed effects model, which requires the use of panel data,
can be very useful in mitigating the bias associated with time invariant,
unobservable effects.

If you have a longer panel and are concerned that the regression function
is shifting over time, you can add T'— 1 time dummy variables to the model.
The model becomes

Yit = Bri + Bt + Bowair + B33it + e (15.3)

where either 31; or 81 have to be omitted in order to avoid perfect collinear-
ity. This model contains N + (7' —1) +2 parameters which is generally fewer
than the NT observations in the sample. Equation (15.3) is called the
two-way fixed effects model because it contains parameters that will be
estimated for each individual and each time period.

15.2 Estimation

Estimating models using panel data is straightforward in gretl . There
are several built in functions to estimate fixed effects, random effects, and
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seemingly related regression models. In this section the gretl commands for
each will be discussed using the examples in Hill et al. (2008).

In order to use the predefined procedures for estimating models using
panel data in gretl you have to first make sure that your data have been
properly structured in the program. The dialog boxes for assigning dataset
structure in gretl are shown in Figures 7.2 and 7.3. The data have to include
variables that identify each individual and time period. Select the Panel
option using the radio button and gretl will then be able to work behind
the scenes to accurately account for the time and individual dimensions.
The datasets that come with this manual have already been setup this way,
but if you are using your own data you’ll want to to assign the proper
dataset structure to it so that all of the appropriate panel data procedures
are available for use.

Now consider the investment model suggested by Grunfeld (1958). Con-
sidering investment decisions of only two firms, General Electric (GE) and
Westinghouse (W), we have

INVget = B1,ge + B2.ceVeE: + B3.ceKaet + eqr (15.4)
INVWw = Brw + BowVive + Baw Kwy + ewe (15.5)

where t =1,2,...,20.

How one proceeds at this point depends on the nature of the two firms
and the behavior of all the omitted factors affecting investment. There are
a number of modeling options and POFE suggests several tests to explore
whether the modeling decision we make is an appropriate one. These are
considered in the following sections.

15.2.1 Pooled Least Squares

Suppose that that the two firms behave identically and that the other
factors influencing investment also have similar effects. In this case, you
could simply pool the observations together and estimate a single equation
via least squares. This simple model implies that the intercepts and each of
the slopes for the two equations are the same and that the omitted factors are
not correlated with one another and that they have the same variability. In
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other words, there is no autocorrelation and the variances are homoscedastic;
when the data are actually generated in this way, least squares is efficient.

In terms of the parameters of the model, 8;gr = Biw for i« = 1,2,3;
Elegrt] = Elews) = 0; Varlegr] = Varlews] = 0% Cov(egpt, ewy) = 0
for all time periods; and Cov(e;j ¢, e; ) = 0 for t # s for each firm, i = GE, W.
It should be clear that in this case,

INViy =B1+ b1+ BVig + B3Ki + ey (15.6)

for observations i = GE,W and t = 1,2,...,10. The gretl script for
estimating this model using grunfeld.gdt is

open c:\userdata\gretl\data\poe\grunfeld.gdt
smpl firm = 3 | firm = 8 --restrict

ols Inv const V K

Imtest --panel

The results are

Inv = 17.87 + 0.015 V 4+ 0.144 K
(7.02)  (0.0062) (0.0186)

T =40 R?>=0.7995 F(2,37) =78.752 & = 21.158

(standard errors in parentheses)

Using the robust option would yield consistent standard errors even if the
two firms have different variances. The final line in the script performs a
test of the equal variance null hypothesis against the alternative that the
variances of the two firms differ O'?;Et = aéE %+ O'IQ/V = U%Vt. Note, in this
test the errors within each group are homoscedastic. The c;utput from this
test is

Likelihood ratio test for groupwise heteroskedasticity -
Null hypothesis: the units have a common error variance
Test statistic: Chi-square(1l) = 13.1346
with p-value = 0.000289899

which allows us to reject homoscedasticity in favor of groupwise heteroskedas-
ticity at any reasonable level of significance.
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The scenario that leads us to use this model seems unlikely, though. At a
minimum the variances of the two conglomerate firms will differ due to their
differences in size or diversity. Further, since the two firms share output in at
least one industry, omitted factors like macroeconomic or market conditions,
might reasonably affect the firms similarly. Finally, there is no reason to
believe that the coefficients of the two firms will be similar.

15.2.2 Fixed Effects

In the fixed effects model, the intercepts for each firm (or individual)
are allowed to vary, but the slopes for each firm are equal. It is particularly
useful when each individual has unique characteristics that are both unmea-
surable and constant over time (also known by the fancy sounding phrase,
‘unobserved time-invariant heterogeneity’). The general form of this model
is found in equation (15.2). The gretl command to estimate this model is
extremely simple. Once your data set is structured within gretl as a panel,
the fixed effect model is estimated using the panel command as shown below
in the script.

open c:\userdata\gretl\data\poe\grunfeld.gdt
smpl full
panel Inv const V K

The results are:

Model 2: Fixed-effects estimates using 200 observations
Dependent variable: Inv

Variable Coeflicient Std. Error t-statistic p-value

A% 0.109771 0.0118549 9.2596 0.0000
K 0.310644 0.0173704 17.8835 0.0000
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Sum of squared residuals 522855.
Standard error of residuals (&) 52.7366
Unadjusted R? 0.944144
Adjusted R? 0.940876
F(11,188) 288.893
Durbin—Watson statistic 0.667695
Log-likelihood —1070.6

Test for differing group intercepts —
Null hypothesis: The groups have a common intercept
Test statistic: F'(9,188) = 48.9915
with p-value = P(F(9,188) > 48.9915) = 1.11131e-044

By default, gretl will test the hypothesis that the fixed effects are the same
for each individual. If you do not reject this hypothesis, then you can
estimate the model using pooled least squares as discussed in the previous
section. The test statistic has an F(9,188) sampling distribution if the pooled
least squares model is the correct one. The computed value is 48.99 and the
p-value is less than 5%, therefore we would reject the pooled least squares
formulation in favor of the fixed effect model in this example.

In this formulation you are assuming that the errors of your model are
homoscedastic within each firm and across firms, and that there is no con-
temporaneous correlation across firms. Gretl allows you to compute stan-
dard errors that are robust to the homoscedasticity assumption. Simply
use the —-robust option in the panel regression. i.e., panel Inv const
V K --robust. This option computes the cluster standard errors that are
discussed in Chapter 15 of Hill et al. (2008).

15.2.3 Random Effects

Gretl also estimates random effects models using the panel command.
In the random effects model, the individual firm differences are thought to
represent random variation about some average intercept for the individual
in the sample. Rather than estimate a separate fixed effect for each firm,
you estimate an overall intercept that represents this average. Implicitly, the
regression function for the sample firms vary randomly around this average.
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The variability of the individual effects is captured by a new parameter, 2.

The larger this parameter is, the more variation you find in the implicit
regression functions for the firms.

Once again, the model is based on equation (15.2). The difference is that
(1 = P1 + u; where u; represents random variation. The model becomes:

Yit = B1 + ui + Bowau + B33 + eu (15.7)

The new parameter, o2, is just the variance of the random effect, u;. If

02 = 0 then the effects are “fixed” and you can use the fixed effects estimator
if the effects are indeed different across firms or the pooled estimator if they
are not.

To estimate the model, using the Grunfeld data use the script

open c:\userdata\gretl\data\poe\grunfeld.gdt
smpl full
panel Inv const V K --random-effects

This yields

Model 3: Random-effects (GLS) estimates using 200 observations
Dependent variable: Inv

Variable Coefficient Std. Error t-statistic p-value
const —57.872 28.8747 —2.0043 0.0464
A% 0.109478 0.0104895 10.4369 0.0000

K 0.308694 0.0171938 17.9538 0.0000
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Mean of dependent variable 145.907

S.D. of dependent variable 216.886

Sum of squared residuals 4.28309e4-08
Standard error of residuals (&) 1470.77

62 2781.14

62 7218.23

6 0.861203
Akaike information criterion 3488.98
Schwarz Bayesian criterion 3498.88
Hannan—Quinn criterion 3492.99

Breusch-Pagan test —
Null hypothesis: Variance of the unit-specific error = 0
Asymptotic test statistic: X% = T797.781
with p-value = 1.63899e-175

Hausman test —
Null hypothesis: GLS estimates are consistent
Asymptotic test statistic: x3 = 2.2155
with p-value = 0.330301

Gretl tests the null hypothesis 02 = 0 against the alternative o2 > 0 by
default and is referred to as the Breusch-Pagan test.

The Hausman test is a test of the null hypothesis that the random
effects are indeed random. If they are random then they should not be
correlated with any of your other regressors. If they are correlated with
other regressors, then you should use the fixed effects estimator to obtain
consistent parameter estimates of your slopes.

In the Grunfeld data, a p-value less than 5% indicates that the Breusch-
Pagan test rejects the hypothesis that the effects are not random (in other
words, the effects are random). For the Hausman test, the p-value is greater
than 5%. The random effects do not appear to be correlated with the
regressors and random effects can be used.
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15.2.4 SUR

The acronym SUR stands for seemingly unrelated regression equa-
tions. SUR is another way of estimating panel data models that are long
(large T) but not wide (small N). More generally though, it is used to esti-
mate systems of equations that do not necessarily have any parameters in
common and are hence unrelated. In the SUR framework, each firm in your
sample is parametrically different; each firm has its own regression function,
i.e., different intercept and slopes. Firms are not totally unrelated, however.
In this model the firms are linked by what is not included in the regression
rather than by what is. The firms are thus related by unobserved factors
and SUR requires us to specify how these omitted factors are linked in the
system’s error structure.

In the basic SUR model, the errors are assumed to be homoscedastic and
linearly independent within each equation, or in our case, each firm. The
error of each equation may have its own variance. Most importantly, each
equation (firm) is correlated with the others in the same time period. The
latter assumption is called contemporaneous correlation, and it is this
property that sets SUR apart from other models.

In the context of the two firm Grunfeld model in (15.4) this would mean
that Varlegr] = O'%;E;VCLT[GW,t] = UIQ/V; Cov(egpt,ewt) = oge,w for all
time periods; and Cov(e; ¢, e;5) = 0 for t # s for each firm, i = GE,W. So in
the SUR model you essentially have to estimate a variance for each individual
and a covariance between each pair of individuals. These are then used to
construct a generalized least squares estimator of the equations parameters.

Even though SUR requires a T and an N dimemsion, it is not specifi-
cally a panel technique. This is because the equations in an SUR system
may be modeling different behaviors for a single individual rather than the
same behavior for several individuals. As mentioned before, it is best used
when panels are long and narrow since this gives you more observations to
estimate the equations variances and the cross equation covariances. More
time observations reduces the sampling variation associated with these es-
timates, which in turn improves the performance of the feasible generalized
least squares estimator. If your panel dataset has a very large number of
individuals and only a few years, then FGLS may not perform very well in
a statistical sense. In the two firm Grunfeld example, N=2 and T=20 so
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we needn’t worry about this warning too much, although the asymptotic
inferences are based on T' (and not N) being infinite.

When estimating an SUR model, the data have to be arranged in a
slightly different way than in the preceding panel examples. Basically, they
need to be arranged as a time series (not a panel) with different firms vari-
ables listed separately. Hill et al. (2008) have done this for us in the grun-
feld2.gdt data set. The gretl script to estimate the two firm SUR model
using this data is

open c:\userdata\gretl\data\poe\grunfeld2.gdt

system name="Grunfeld"

equation inv_ge const v_ge k_ge
equation inv_we const v_we k_we
end system

estimate "Grunfeld" method=sur

Since SUR is a method of estimating a system of equations (just like you
did in chapter 11), the same syntax is used here. It consists of a block of
code that starts with the system name="Grunfeld" line. One advantage
naming your system is that results are attached to it and you can per-
form subsequent computations based on them. For instance, with a saved
set of equations you can impose restrictions on a single equation in the
model or impose restrictions across equations. This is accomplished using
the restrict statement.

Following the system name, each equation is put on a separate line.
Notice that each equation is identified using equation which is followed by
the dependent variable and then the independent variables which include
a constant. Close the system block using the end system command. The
system is then estimated using the line estimate "Grunfeld" method=sur.
Executing this script yields Figure 15.3 below.

The test to determine whether there is sufficient contemporaneous cor-
relation is simple to do from the standard output. Recall from POFE that
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Figure 15.3: The results from the two firm model estimated as seemingly
unrelated regression equations

retl: script output =lol x|
BRER B X

gretl wersion 1.6.0
Current session: 2007/01/25 16:02
? open ciiuserdatalgretclhdata PoEYgrunfeld2 . gdt

I+]

Read datafile c:'userdatalgretlidata’PoEtgrunfelds.gdc
periodicity: 1, maxchs: 20,
ohservations range: 1935-1954

Listing 7 wariables:
0) const 1) inv_ge 2] wv_ge 31 k_ge 4) inv_ue
51 wv_we 6) k_we

system method=sur

egquation inv_ge const v_ge k_ge
equation inv_we const v_we k_we
end system

EERREN R

Egquation system, Seemingly Tnrelated Regressions

Egquation 1: SUR estimates using the Z0 observations 1935-1954
Dependent variable: inv_ge

VARIAELE COEFFICIENT STDERROR T STAT P-VALUE
CONsSt -27.7193 27.0328 -1.0&5 0.31955
v_ge 0.0383102 0.0132901 2.883 0.01034 #%
k_ge 0.1380368 0.0z230356 6.036 0.00001 #%+

Mean of dependent varisble = 102.29
Standard deviation of dep. war. = 48.5845
Sum of sguared residuals = 13738.4
Standard error of residuals = 26.2568

Egquation 2: SUR estimates using the Z0 observations 1935-1954
Dependent varisble: inv_we

VARIAELE COEFFICIENT STDEREOR T STAT P-VALUE
COnst -1.25199 6.95635 -0.180 0.85930
v_ue 0.0576298 0.0134110 4.297 0.000458 #%+
k_we 0.0639751 0.0459010 1.308 0.20818

Mean of dependent variasble = 42.3915
Standard deviation of dep. war. = 19.1102
Sum of sguared residuals = 1801.3
Standard error of residuals = 9.49026

Cross-equation VCV for residuals
[correlations above the diagonal

689,42 (0.765)
190.64 20,065

log determinant = 10.1562

Close |
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the test is based on the squared correlation

olaew

0O°GEO"W

A little caution is required here. The squared correlations are supposed to
be computed based on the residuals from the least squares estimator, not
SUR. The “Cross-equation VCV for residuals” in the output in Figure 15.3 is
computed based on SUR residuals. So, you’ll need to change the estimation
method to ols and rerun the script to get the right inputs for this statistic.
The new script is:

open c:\userdata\gretl\data\poe\grunfeld?2.gdt

system name="Grunfeld"

equation inv_ge const v_ge k_ge
equation inv_we const v_we k_we
end system

estimate "Grunfeld" method=ols
and the resulting cross-equation variance covariance for the residuals is

Cross-equation VCV for residuals
(correlations above the diagonal)

T77.45 (0.729)
207.59 104.31

Then you compute

2 207.59?
GEW ™ (777.45)(104.31)

=0.729 (15.9)

Notice that gretl produces this number for you in the upper diagonal of the
matrix and places it in parentheses. Using the given computation the test
statistic is

2 2
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Table 15.1: Script for imposing cross-equation restrictions in an SUR model

system name="Grunfeld"

equation inv_ge const v_ge k_ge
equation inv_we const v_we k_we
end system

restrict "Grunfeld"
bl1,1]1-b[2,1]=0
b[1,2]-b[2,2]=0
b[1,3]-b[2,3]=0
end restrict

estimate "Grunfeld" method=sur --geomean

provided the null hypothesis of no correlation is true. The arithmetic is
(20 % 0.729) = 14.58

The restrict command can be used to impose the cross-equation re-
strictions on a system of equations that has been previously defined and
named. The set of restrictions is started with the keyword restrict and
terminated with end restrict. Some additional details and examples of
how to use the restrict command are given in section 6.1. Each restric-
tion in the set is expressed as an equation. Put the linear combination of
parameters to be tested on the left-hand-side of the equality and a numeric
value on the right. Parameters are referenced using b[i,j] where ¢ refers
to the equation number in the system, and j the parameter number. So, to
equate the intercepts in equations one and two use the statement

b[1,1] = b[2,1] =0 (15.11)
The full syntax for testing the full set of cross-equation restrictions

Brce =brw, DB2ceE= 0w, BscE= 0w (15.12)

on equation 15.4 is shown in Table 15.1: Gretl estimates the two equation
SUR subject to the restrictions. Then it computes an F-statistic of the null
hypothesis that the restrictions are true versus the alternative that at least
one of them is not true. It returns the computed F-statistic and its p-value.
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A p-value less than the desired level of significance leads to a rejection of
the hypothesis.

The gretl output from this test procedure is

F test for the specified restrictions:
F(3,34) = 2.92224 with p-value 0.0478934

which matches the results in the text. At the 5% level of significance, the
equality of the two equations is rejected.

15.3 NLS Example

Hill et al. (2008) provides a subset of National Longitudinal Survey which
is conducted by the US Department of Labor. The database includes ob-
servations on women, who in 1968, were between the ages of 14 and 24.
It then follows them through time, recording various aspects of their lives
annually until 1973 and bi-annually afterwards. Our sample consists of 716
women observed in 5 years (1982, 1983, 1985, 1987 and 1988). The panel is
balanced and there are 3580 total observations.

Two models are considered in equations (15.13) and (15.14) below.

In(WAGE);; = (15 + Peexpery + ﬂgeajperi + Batenure;
+ Bstenure?, + fgsouthi; + fruniong; + ey (15.13)

In(WAGE); = (1 + Beexperis + ﬁgexper?t + Batenure;,
+ ﬁ5tenure?t + Bgsouth;; + Bruniong+
+ Bgblack; + Poeducyy + e (15.14)

The first model (15.13) is estimated using fixed effects. Race (black)
and education (educ) are added to form the model in (15.14). Since these
variables do not change for individuals in the sample, their influences cannot
be estimated using fixed effects. So, this equation is estimated using random
effects using the script below:
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open c:\userdata\gretl\data\poe\nels_panel.gdt

panel lwage const exper exper2 tenure tenure2 south union

panel lwage const exper exper2 tenure tenure2 south union \
black educ --random-effects

Notice that in the random effects line a backslash follows the variable union.
This is the continuation command, which tells gretl that the command
continues on the next line. The results, in tabular form, are in Table 15.2
below. Wisely, gretl has omitted the R? for the random effects model.
Recall that R? is only suitable for linear models estimated using OLS, which
is the case for one-way fixed effects.

The complete set of results of random effects estimation is shown in the
table 15.3 below. The estimate of 6. = +/0.0380681 = 0.1951. Also, the
result of the LM test for the randomness of the individual effects (o2 > 0)
and the Hausman test of the independence of the random effects from the
regressors matches that of your text.

The conclusion from these tests is that even though there is evidence
of random effects (LM rejects), the random effects are not independent of
the regressors; GLS estimator will be inconsistent and you’ll have to use the
fixed effects estimator of the smaller model. As a result, you will be unable
to determine the effects of education and race on wages.

There is one difference between the gretl results and those from POF,
namely 6, = v/0.115887 = 0.3404 from gretl is slightly larger than that
obtained by Hill et al. (2008) using Stata. This is not too surprising since
there are several ways to compute 2. The difference apparently has little
effect on the computation of the coefficients and standard errors since these
are fairly close matches to those in the text.
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Table 15.2: Fixed Effects and Random Effects estimates for equations
(15.13) and (15.14), respectively.

Model Estimates
Dependent variable: Iwage

Fixed Effects Random Effects

exper 0.04108** 0.04362**
(0.006620) (0.006358)
exper2 —0.0004091 —0.0005610**
(0.0002733) (0‘0002626)
tenure 0.01391** 0.01415**
(0.003278) (0.003167)
tenure2  —0.0008962** —0.0007553**
(0.0002059) (0‘0001947)
south —0.01632 —0.08181**
(0.03615) (0.02241)
union 0.06370** 0.08024**
(0.01425) (0.01321)
const 0.5339**
(0.07988)
black —0.1167**
(0.03021)
educ 0.07325**
(0.005331)
n 3580 3580
R? 0.8236
/ 1173.78 —6999.08

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level
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Table 15.3: Random-effects (GLS) estimates using 3580 observations

Variable

const
exper
exper2
tenure
tenure2
south
union
black
educ

Dependent variable: lwage

Coefficient

0.533929
0.0436170
—0.000560959
0.0141541
—0.000755342
—0.0818117

0.0802353
—0.116737
0.0732536

Mean of dependent variable
S.D. of dependent variable

Sum of squared residuals

Standard error of residuals (&)

5.2

IS

>

Akaike information criterion
Schwarz Bayesian criterion

Hannan—Quinn criterion

Breusch-Pagan test —
Null hypothesis: Variance of the unit-specific error = 0

Asymptotic test statistic: x? = 3859.28

with p-value = 0

Hausman test —
Null hypothesis: GLS estimates are consistent

Asymptotic test statistic: x3 = 20.7252

with p-value = 0.00205521

Std. Error t-statistic
0.0798828 6.6839
0.00635758 6.8606
0.000262607 —2.1361
0.00316656 4.4699
0.000194726 —3.8790
0.0224109 —3.6505
0.0132132 6.0724
0.0302087 —3.8643
0.00533076 13.7417

1.91824
0.464607
10460.3
1.71126
0.0380681
0.115887
0.743683
14016.2
14071.8
14036.0

p-value

0.0000
0.0000
0.0327
0.0000
0.0001
0.0003
0.0000
0.0001
0.0000
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15.4 Script

open c:\userdata\gretl\data\poe\grunfeld.gdt
smpl firm = 3 | firm = 8 --restrict

ols Inv const V K

Imtest --panel

open c:\userdata\gretl\data\poe\grunfeld.gdt
smpl full
panel Inv const V K

open c:\userdata\gretl\data\poe\grunfeld.gdt
smpl full
panel Inv const V K --random-effects

open c:\userdata\gretl\data\poe\grunfeld?2.gdt
system name="Grunfeld"

equation inv_ge const v_ge k_ge

equation inv_we const v_we k_we

end system

estimate "Grunfeld" method=sur --geomean

restrict "Grunfeld"
bl1,1]1-b[2,1]=0
b[1,2]-b[2,2]=0
b[1,3]-b[2,3]=0
end restrict

estimate "Grunfeld" method=sur --geomean
system name="Grunfeld"

equation inv_ge const v_ge k_ge

equation inv_we const v_we k_we

end system

estimate "Grunfeld" method=ols --geomean
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Qualitative and Limited Dependent
Variable Models

16.1 Probit

There are many things in economics that cannot be meaningfully quan-
tified. How you vote in an election, whether you go to graduate school,
whether you work for pay, or what major you choose has no natural way of
being quantified. Each of these expresses a quality or condition you possess.
Models of how these decisions are determined by other variables are called
qualitative choice or qualitative variable models.

In a binary choice model, the decision you wish to model has only two
possible outcomes. You assign artificial numbers to each outcome so that
you can do further analysis. In a binary choice model it is conventional to
assign ‘1’ to the variable if it possesses a particular quality or if a condition
exists and ‘0’ otherwise. Thus, your dependent variable is

_ | 1 if individual t has the quality
P70 0 if not.

The probit statistical model expresses the probability p that your dependent

276
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variable takes the value 1 as a function of your independent variables.

Pl(y|ze) = 1] = ®(61 + far1) (16.1)

where @ is the cumulative normal probability distribution (cdf). Estimating
this model using maximum likelihood is very simple since the MLE of the
probit model is already programmed into gretl. The syntax for a script is
the same as for linear regression except you use the probit command in
place of ols. The following script estimates how the difference in travel
time between bus and auto affects the probability of driving a car. The
dependent variable (auto) is equal to 1 if travel is by car, and dtime is (bus
time - auto time).

open c:\userdata\gretl\data\poe\transport.gdt

probit auto const dtime

genr pl = $coeff(const)+$coeff (dtime)*20

genr dt = dnorm(pl)*$coeff (dtime)

genr p2 = cnorm($coeff (const)+$coeff (dtime)*30)

The second line computes the predicted value of the index (81 + [adtime)
when dtime = 20 using the estimates from the probit MLE. The next
line computes the marginal affect on the probability of driving if you in-
crease the difference in travel time by one minute when dtime = 20, i.e.,
d(P1 + Padtime)Ba. The dnorm function in gretl computes ¢(), the normal
pdf evaluated at the argument in parentheses. The last line computes the
estimated probability of driving, given that it takes 30 minutes longer to ride
the bus. This computation requires cnorm, which computes the cumulative
normal cdf, ®().

The results are:

pl = 0.535545
dt = 0.0103690
p2 = 0.798292

Of course, you can also access the probit estimator from the pull-down
menus using Model>Nonlinear models>Probit. The dialog box (Figure
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Figure 16.1: Use Model>Nonlinear models>Probit to open the Probit
model’s dialog box.

rﬂ gretl: specify model [Z]@]qh

Probit

consk Dependent variable
car_time [ Choose -= auko
bus_kime
drime [ ] 5et as default
auto Independent ariables

consk

dtirne

[ ] robust standard errors
[ ] show details of iterations
(%) show slopes at mean

() show p-values
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16.1 looks very similar to the one for linear regression, except it gives you a
new option to view the details of the iterations.

Whether you use the script or the dialog box, you will get the following
results:

Model 2: Probit estimates using the 21 observations 1-21
Dependent variable: auto

Variable Coefficient Std. Error t-statistic ~ p-value
const —0.0644342 0.399244 —0.1614 0.8718
dtime 0.0299989 0.0102867 2.9163 0.0035

Mean of auto = 0.476

Number of cases ‘correctly predicted” = 19 (90.5 percent)
McFadden’s pseudo-R? = 0.575761

f(B'z) at mean of independent vars = 0.397
Log-likelihood = —6.16516

Likelihood ratio test: y? = 16.734 (p-value 0.000043)

Several other statistics are computed. They include a measure of fit (Mc-
Fadden’s pseudo-R?), the value of f(/3'x) at mean of independent variables,
and a test statistic for the null hypothesis that the coefficients on the inde-
pendent variables (but not the constant) are jointly zero; this corresponds
to the overall F-statistic of regression significance in Chapter 6.

16.2 Multinomial Logit

Gretl doesn’t include a routine to estimate multinomial logit (MNL)
using maximum likelihood, so the alternatives are either (1) use gretl’s
maximum likelihood module to estimate your own or (2) use another piece
of software! In this section I'll give you an idea of how to estimate this model
using gretl and in section 16.9 I'll show you how to estimate the model in
another free software called R.
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Although Gretl doesn’t include a specific function for estimating MNL,
it can do it with a little effort. Gretl contains two things that make this
reasonably easy to do. First, it includes a module for maximizing likelihood
functions (see Chapter 14 for other examples). To use the mle function, the
user has to write a program using gretl’s language to compute a model’s
log-likelihood given the data. The parameters of the log-likelihood must
be declared and given starting values (using the genr command). If you
want, you can specify the derivatives of the log-likelihood function with
respect to each of the parameters; if analytical derivatives are not supplied,
a numerical approximation is computed. In many instances, the numerical
approximations work quite well. In the event that the computations based
on numerical derivatives fail, you may have to specify analytical ones to
make the program work.

Gretl also includes a way for users to define new functions. These are
placed in a script that can be run from the script editor. Once a function is
written, it can often be reused with ease. Functions can also be published
and shared via gretl’s database server. The Gretl Users Guide will have
the most up-to-date information on the use of functions and I suggest you
look there for further information. What appears below is taken from the
gretl Users Guide. The example for MNL for POFE requires only a slight
modification in order for the program to run with our dataset.

Functions must be defined before they are called (used). The syntax for
defining a function looks like this

function name(inputs)
function body
end function

You select a name to give your function. Keep it under 32 characters and
start the name with a character. The inputs usually include the data and
any parameters included in the log-likelihood. The parameters can be in
matrix or scalar form.

The multinomial logit function, which can be found in the Gretl User’s
Guide, is defined

function mlogitlogprobs(series y, matrix X, matrix theta)
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scalar n = max(y)
scalar k = cols(X)
mshape (theta,k,n)
matrix tmp = X*b
series ret = -1n(1 + sumr(exp(tmp)))
loop for i=1..n --quiet
series x = tmpl[,i]
ret += (y=%$i) 7 x : O
end loop
return series ret

matrix b

end function

The function is named mlogitlogprobs and has three arguments. The
first is the dependent variable, series y, the second is set of independent
variables contained in matrix X, and the last is the matrix of parameters,
called theta. Scalars in the function are defined for sample size, number
of regressors, and the coefficients are placed in an nxk array in order to
match the dimensionality of the data. The index tmp=X#*Db is created and
ret returns the log-likelihood function. Don’t worry if you can’t make sense
of this because you should not have to change any of this to estimate MNL
with another dataset. That is one of the beauties of defining and using a
function.

To use the mlogitlogprobs function, you need to know a little about
how it works. You will have to get your data into the right form in order
for the function to work properly. After loading the data, make sure that
the dependent choice variable is in the correct format for the function. The
function requires the choices to start at 0. If you list the data, you’ll find
that psechoice is coded 1, 2, 3 instead of the required 0, 1, 2. So the next
step is to subtract 1 from psechoice.

Create the matrix of regressors, define the number of regressors and use
these to initialize the matrix of coefficients, theta. Then list the dependent

variable, matrix of independent variables, and the initialized parameter ma-
trix in the function. Click the run button and wait for the result.

open c:\userdata\gretl\data\poe\nels_small.gdt

# dep. var. must be O-based
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psechoice = psechoice-1

#put regressors into a matrix called X
smpl full matrix X = { grades const }

scalar k = cols(X)

matrix theta = zeros(2xk, 1)

mle loglik = mlogitlogprobs(psechoice,X,theta)
params theta

end mle --verbose —--hessian

The only changes I had to make to the original example in the Gretl
User Guide are (1) change the dataset (2) change the dependent variable
to psechoice (3) put the desired regressors into X and (4) make sure the
function contains the desired variables.

The results from the program appear below in Figure 16.2. Wow! They
match those in POE and are dirt simple to obtain!' Finally, if you want
to produce the probabilities and marginal effects, you can use the estimates
gretl has stored in the 4x1 vector called theta. They are available for
further computations using the scalar or matrix functions. The script at
the end of this chapter computes the predicted probabilities and marginal
effects in Table 16.3 or POE. Although the predictions are close to those in
POE, the marginal effects are somewhat different.

16.3 Conditional Logit

Gretl doesn’t include a routine to estimate conditional logit, so you’ll
want to use R to estimate this model. See sections 16.9 and 16.9.2 for details.

!Thanks to Jack Lucchetti for pointing this out to me.
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Figure 16.2: These results are from a gretl function taken from the Gretl
Users Guide.

retl: script output % - |EI|1|
BB x
Gradients: -6.3063e-005 9.3064e-006 7.7355e-006-1.4433e-005 .:J

—-- FINAL VALUES:

Iteration 17: Log-likelihood = -875.3130586514 (steplength = 1.28e-005)
Parameters: -0.30879 Z.5064 —-0.70620 5.7699
Gradients: -6.3063e-005 9.3064e-006 7.7355e-006-1.4433e-005

Tolerance = 1.51859%e-012
Function evaluations: 54
Evaluations of gradient: 17

Model 1: ML estimates using the 1000 ocbserwvations 1-1000
loglik = mlogitlogprobs (psechoice, X, theta)
Standard errors based on Hessian

PARAMETER ESTIMATE STDERRCR T STAT P-VALUE
thetal1] -0.308789 0.0522846 =5.906 <0.00001 #**
thetalZ] Z.50642 0.418353 5.5991 <0.00001 #*#*+*
thetal3] -0.706197 0.0529248 -13.343 <«0.00001 *#*%*
thetal4] 5.76988 0.404324 14.270 <0.00001 ##*+*
Log-likelihood = -875.313
Akaike information criterion (AIC) = 1758.63
Schwarz Bayesian criterion (BIC) = 1778.26
Hannan-guinn criterion (HQC) = 1766.09

Close |
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16.4 Ordered Probit

In this example, the probability of attending no college, a 2 year college,
and a 4 year college are modeled as a function of a student’s grades. In
principle, we would expect that those with higher grades to be more likely
to attend a 4 year college and less likely to skip college altogether. In the
dataset, grades are measured on a scale of 1 to 13, with 1 being the highest.
That means that if higher grades increase the probability of going to a 4
year college, the coefficient on grades will be negative. The probabilities are
modeled using the normal distribution in this model where the outcomes
represent increasing levels of difficulty.

We can use gretl to estimate the ordered probit model because its
probit command actually handles multinomial choice as well as binomial
choice. Open the nels_small.gdt data

open c:\userdata\gretl\data\poe\nels_small.gdt

The minimum choice must be coded as a zero. Once psechoice is recoded
in this way, the usual probit syntax works.

series y = psechoice - 1
discrete y probit y const grades

The results in Figure 16.3 are very much like the ones in POFE and produced
by MCMCpack below. Gretl reports the estimates in a different way, but
the results are equivalent. In gretl the intercept is equal to the parameter
— 1 in the ‘no-intercept’ model computed by default in Stata and shown in
POE. The second cut-off in the no-intercept model is po = —(Intercept—-ys),
where 75 is the single threshold in gretl. So, these results are nearly identical
to those in POE.
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Figure 16.3: Ordered probit results from the gretl’s probit command
=10l x|
EBBERB S x|

? open criuserdatatgretlidatalposinels small.gdt .:J

Read datafile c:iuserdata‘\gretlidataiposinels small.gdt
periodicity: 1, maxcohs: 1000,
ohservations range: 1-1000

Listing 9 wvarisbles:

0) const 1) psechoice 2) hscath 3) grades
4) faminc 5) famsiz 6) parcoll 71 female
8) black

? =eries y = psechoice - 1

Generated series y (ID 9
? discrete y
? probit ¥ const grades

Model 1: COrdered Probit estimates using the 1000 ohserwvations 1-1000
Dependent wvariasble: ¥

VARIABLE COEFFICIENT STDERRCR T STAT P-WVALUE
const 2.94559 0.146828 20.061 <0.00001 #**%
grades -0.306624 0.0191735 -15.992 <0.00001 *%%
cutl 0.555605 0.0479335 17.850 <0.00001 ##%#%

Log-likelihood = -875.822

bkaike informstion criterion (AIC) = &70.295
Schwarz Bayesian criterion (BIC) = £85.018 |
Hannan-Quinn criterion (HQC) = 675.891

Close:
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16.5 Poisson Regression

When the dependent variable in a regression model is a count of the
number of occurrences of an event you’ll want to use the poisson regression
model. In these models, the dependent variable is a nonnegative integer,
(i.e., y =0,1,...), which represent the number of occurrences of a particular
event. The probability of a given number of occurrences is modeled as a
function of independent variables.

,Ay

y!

where A = 1 + [ax is the regression function.

Estimating this model using maximum likelihood is very simple since
the MLE of the poisson regression model is already programmed into gretl.
The syntax for a script is the same as for linear regression except you use
the possion command in place of ols. This is shown in the following script
which replicates the example from your textbook.

A country’s total number of medals (medaltot) in the 1988 olympics
is modeled as a function of in(gdp) and In(pop). Of course, you can also
access the poisson regression estimator from the pull-down menus using
Model>Nonlinear models>Possion. To replicate the example in POE be
sure to restrict the sample to 1988 before estimating the model.

open c:\userdata\gretl\data\poe\olympics.gdt

smpl year = 88 --restrict

genr lpop = log(pop)

genr lgdp = log(gdp)

poisson medaltot const lpop lgdp

genr mft = exp($coeff (const)+$coeff (1pop)*median(lpop) \

+$coeff (1gdp)*median (1gdp))*$coeff (1gdp)

The results for poisson model are:

Model 1: Poisson estimates using the 151 observations 29-179
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Dependent variable: medaltot

Variable Coefficient Std. Error t-statistic p-value
const —15.887 0.511805 —31.0420 0.0000
Ipop 0.180038 0.0322801 5.5773 0.0000
lgdp 0.576603 0.0247217 23.3238 0.0000
Mean of dependent variable 4.88742
S.D. of dependent variable 16.6267
McFadden’s pseudo-R? = 0.544658
Log-likelihood —722.33

The marginal effect computation yields:

7 genr mft = exp($coeff (const)+$coeff (1pop)*median(lpop) \
+$coeff (1gdp) *median (1gdp))*$coeff (1gdp)
Generated scalar mft (ID 14) = 0.497753

16.6 Tobit

The tobit model is essentially just a linear regression where some of the
observations on your dependent variable have been censored. A censored
variable is one that, once it reaches a limit, it is recorded at that limit no
matter what it’s actual value might be. For instance, anyone earning $1
million or more per year might be recorded in your dataset at the upper
limit of $1 million. That means that Bill Gates and the authors of your
textbook earn the same amount in the eyes of your dataset (just kidding,
fellas). Least squares can be seriously biased in this case and it is wise to
use a censored regression model (tobit) to estimate the parameters of the
regression when a portion of your sample is censored.

Hill et al. (2008) use tobit to estimate a model of hours worked shown
in equation (16.3).

hours; = (31 + (2 * educ; + Bsexper; + [y * age; + B5 * kidsl6; + e; (16.3)
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using the mroz.gdt data. A number of individuals in the sample do not work
and report zero hours worked. Estimation of this model in gretl is shown
in the following script which replicates the example from POE. The script
estimates a tobit model of hours worked and generates the marginal effect
of another year of schooling on the average hours worked.

open "c:\userdata\gretl\data\poe\mroz.gdt"
tobit hours const educ exper age kidsl6

The results from the basic tobit estimation of the hours worked equation
are:

Model 2: Tobit estimates using the 753 observations 1-753
Dependent variable: hours

Variable Coeflicient Std. Error t-statistic p-value
const 1349.88 382.729 3.5270 0.0004
educ 73.2910 20.7496 3.5322 0.0004
exper 80.5353 6.58247 12.2348 0.0000
age —60.767 7.27480 —8.3532 0.0000
kidsl6 —918.91 113.036 —8.1294 0.0000

Mean of dependent variable 740.576

S.D. of dependent variable 871.314
Censored observations 43.2%
o 1133.70
Log-likelihood —3827.1

Test for normality of residual —
Null hypothesis: error is normally distributed
Test statistic: x3 = 6.31677
with p-value = 0.0424944

The marginal effect of another year of schooling on hours worked is

OE(Hours;)

OBduc, O (Hours;) B, (16.4)
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where Hzarsi is the estimated regression function evaluated at the mean
levels of education, experience, and age for a person with one child under
the age of six. Then, the cnorm function is used to compute the normal
CDF, ®(Hours;), evaluated at the prediction.

genr H_hat = $coeff (const)+$coeff (educ)*mean(educ) \

+$coeff (exper)*mean(exper) \

+$coeff (age) *mean(age) +$coeff (kidsl6) *1
genr z = cnorm(H_hat/$sigma)
genr pred = zx$coeff (educ)

Note, the backward slashes (\) used at the end of the first two lines in the
generation of H_hat are continuation commands. The backslash at the end
of a line tells gretl that the next line is a continuation of the current line.
This helps keep your programs looking good (and in this case, fitting within
the margins of the page!).

Finally, estimates of the restricted sample using least squares and the
full sample that includes the zeros for hours worked follow.

smpl hours > 0 --restrict
ols hours const educ exper age kidsl6

smpl —--full
ols hours const educ exper age kidsl6

Notice that the sample is restricted to the positive observations using the
smpl hours > 0 --restrict statement. To estimate the model using the
entire sample the full range is restored using smpl full.

16.7 Simulation

You can use gretl to show that least squares is biased when the sample is
censored using a Monte Carlo simulation. The simulated data are generated

yi = -9+ 1z +e (16.5)
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where e; ~ N(0,16). Then,

Jy ity >0
T 0 ifyr<o

The z; ~ U(0,20), which are held constant in the simulated samples.

The following script demonstrates that least squares is indeed biased
when all observations, including the zero ones, are included in the sample.
The line genr yi = y > 0 is a logical statement that generates ‘1" or ‘0’
depending on whether the statement to the right of the equal sign is true.
Thus, a new variable, yi, is created that takes the value 1 if y >0 and is zero
if not. When multiplied by y in the next statement, the result is a sample,
yc, censored from below at zero.

open c:\userdata\gretl\data\poe\tobit.gdt
smpl 1 200
genr xs = 20*uniform()
loop 1000 --progressive
genr y = -9 + 1xxs + 4*normal()
genr yi =y >0
genr yc = y*yi
ols yc const xs
genr bls = $coeff(const)
genr b2s = $coeff(xs)
store coeffs.gdt bls b2s
endloop

To repeat the exercise using least squares on only the positive observations
use

open c:\userdata\gretl\data\poe\tobit.gdt
genr xs = 20*uniform()

genr idx =1

matrix A = zeros(1000,3)

loop 1000
smpl ——full
genr y = -9 + 1%xs + 4*normal()

smpl y > 0 —-restrict
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ols y const xs —-—quiet
genr bls = $coeff(const)
genr b2s = $coeff (xs)
matrix A[idx,1]=idx
matrix A[idx,2]=bils
matrix A[idx,3]=b2s
genr idx = idx + 1
endloop

A matrix bb = meanc(A) bb

In this case, we are not able to use the --progressive loop construct in
gretl. Without it, gretl generates a lot of output to the screen, but it can’t
be avoided in this case. Using the regular loop function, store each round’s
estimates in a matrix called A. Then, after the loop is finished, matrix bb =
meanc (A) returns the column means of your matrix. These are the average
values of the parameters in the Monte Carlo.

16.8 Selection Bias

Selection bias occurs when your sample is truncated and the cause of
that truncation is correlated with your dependent variable. Ignoring the
correlation, the model could be estimated using least squares or truncated
least squares. In either case, obtaining consistent estimates of the regression
parameters is not possible. In this section the basic features of the this model
will be presented.

Consider a model consisting of two equations. The first is the selection
equation, defined

z=m+rw +u, i=1,...,N (16.6)

where 2" is a latent variable, 71 and 72 are parameters, w; is an explanatory
variable, and u; is a random disturbance. The latent variable is unobserv-
able, but we do observe the dichotomous variable

1 2zF>0
2 = Zi _ (16.7)
0 otherwise
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The second equation, called the regression equation, is the linear model
of interest. It is

yi=P+0Pex;+e, i=1,....,n, N>n (16.8)

where y; is an observable random variable, 31 and (2 are parameters, x; is
an exogenous variable, and e; is a random disturbance. It is assumed that
the random disturbances of the two equations are distributed as

1-~[6)-C 2] 109

A selectivity problem arises when y; is observed only when z; = 1 and
p # 0. In this case the ordinary least squares estimator of 3 in (16.8) is biased
and inconsistent. A consistent estimator has been suggested by Heckman
(1979) and is commonly referred to as Heckman’s two-step estimator, or
more simply, Heckit. Because the errors are normally distributed, there is
also a maximum likelihood estimator of the parameters. Gretl includes
routines for both.

The two-step (Heckit) estimator is based on conditional mean of y; given
that it is observed

Elyilzi > 0] = p1 + faxi + Baki (16.10)

where

), = 2t ewi) (16.11)

(71 +72wi)
is the inverse Mill’s ratio; ¢(-) is the standard normal probability den-
sity function evaluated at the argument, and ®(-) is the cumulative density
function of the standard normal random variable evaluated at the argument
(71 +2w;). The argument (1 +72w;) is commonly referred to as the index
function. Adding a random disturbance yields:

Yi = B+ Bazi + Bai + v; (16.12)

It can be shown that (16.12) is heteroskedastic and if \; were known
(and nonstochastic), then the selectivity corrected model (16.12) could be
estimated by generalized least squares. Alternately, the heteroskedastic
model (16.12) could be estimated by ordinary least squares, using White’s
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heteroskedasticity consistent covariance estimator (HCCME) for hypothesis
testing and the construction of confidence intervals. Unfortunately, A; is not
known and must be estimated using the sample. The stochastic nature of A;
in (16.12) makes the automatic use of HCCME in this context inappropriate.

The two-steps of the Heckit estimator consist of

1. estimate the selection equation to obtain 4; and 43. Use these in
equation (16.11) to estimate the inverse Mill’s ratio, A;.

2. Add ), to the regression model as in equation (16.12) and estimate it
using least squares.

The example from POFE uses the mroz.gdt data. The first thing we’ll do
is to estimate the model ignoring selection bias using least squares on the
nonzero observations. Load the data and generate the natural logarithm of
wages. Since wages are zero for a portion of the sample, gretl will generate
an error when you take the natural logs. You can safely ignore it as gretl will
simply create missing values for the variables that cannot be transformed.
Then use the ols command to estimate a linear regression on the truncated
subset.

open c:\userdata\gretl\data\poe\mroz.gdt
genr lwage = log(wage)

regress lwage

const educ exper

The results are:

OLS estimates using the 428 observations 1-428
Dependent variable: lwage

Variable Coefficient Std. Error t-statistic  p-value
const —0.400174 0.190368 —2.1021  0.0361
educ 0.109489 0.0141672 7.7283  0.0000

exper 0.0156736 0.00401907 3.8998  0.0001
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Sum of squared residuals 190.195
Standard error of residuals (&) 0.668968
Unadjusted R? 0.148358
Adjusted R? 0.144350
F(2,425) 37.0180

Notice that the sample has been truncated to include only 428 observations
for which hour worked are actually observed. The estimated return to ed-
ucation is about 11%, and the estimated coefficients of both education and
experience are statistically significant.

The Heckit procedure takes into account that the decision to work for
pay may be correlated with the wage a person earns. It starts by modeling
the decision to work and estimating the resulting selection equation using a
probit model. The model can contain more than one explanatory variable,
w;, and in this example we have four: a womans age, her years of education,
a dummy variable for whether she has children and the marginal tax rate
that she would pay upon earnings if employed. Generate a new variable
kids which is a dummy variable indicating the presence of any kids in the
household.

generate kids = (kidsl6+kids618>0)

Estimate the probit model, generate the index function, and use it to com-
pute the inverse Mill’s ratio variable. Finally, estimate the regression in-
cluding the IMR as an explanatory variable.

list X = const educ exper
list W = const mtr age kids educ
probit 1lfp W
genr ind = $coeff(const) + $coeff(age)*age + \
$coeff (educ)*educ + $coeff (kids)*kids + $coeff (mtr)*mtr
genr lambda = dnorm(ind)/cnorm(ind)
ols lwage X lambda

heckit lwage X ; 1fp W --two-step

This script uses a convenient way to accumulate variables into a set using
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the list command first encountered in section 10.3.3. The command list
X = const educ exper puts the variables contained in const, educ, and
exper into a set called X. Once defined, the set of variables can be referred
to as X rather than listing them individually as we’ve done up to this point.
Similarly, we’ve put the variables from the selection equation into a set called
W. The dnorm and cnorm functions return the normal density and normal
cumulative density evaluated at the argument, respectively. The results are:

OLS estimates using the 428 observations 1-428
Dependent variable: lwage

Variable Coeflicient Std. Error t-statistic ~ p-value
const 0.810542 0.494472 1.6392 0.1019
educ 0.0584579 0.0238495 2.4511  0.0146
exper 0.0163202 0.00399836 4.0817  0.0001
lamda —0.866439 0.326986 —2.6498  0.0084

Sum of squared residuals 187.097

Standard error of residuals (&) 0.664278

Unadjusted R? 0.162231

Adjusted R? 0.156304

F(3,424) 27.3688

Notice that the estimated coefficient of the inverse Mill’s ratio is statisti-
cally significant, implying that there is a selection bias in the least squares
estimator. Also, the estimated return to education has fallen from approx-
imately 11% (which is inconsistently estimated) to approximately 6%. Un-
fortunately, the usual standard errors do not account for the fact that the
inverse Mills ratio is itself an estimated value and so they are not technically
correct. To obtain the correct standard errors, you will use gretl’s built-in
heckit command.

The heckit command syntax is
heckit y const x2 x3 ... xk; z const w2 w3 ... ws —--options

where const x2 ... xk are the k independent variables for the regression
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and const w2 .... ws are the s independent variables for the selection
equation. In this example, we’ve used the two-step option which mimics
the manual procedure employed above, but returns the correct standard
errors. If you don’t specify the option, gretl will estimate the model using
maximum likelihood. For the Mroz data the gretl command is

heckit lwage X ; 1lfp W —-two-step

Again, we’ve used the results from the 1ist function, which put the inde-
pendent variables for the regression into X and the variables for the selection
equation into W.

The results appear below:

Two-step Heckit estimates using the 428 observations 1-428
Dependent variable: lwage

Variable Coeflicient Std. Error t-statistic  p-value
const 0.810542 0.610798 1.3270  0.1845
educ 0.0584579 0.0296354 1.9726  0.0485
exper 0.0163202 0.00420215 3.8838  0.0001
lambda —0.866439 0.399284 —2.1700  0.0300
const 1.19230 0.720544 1.6547  0.0980
educ 0.0837753 0.0232050 3.6102  0.0003
kids —0.313885 0.123711 —2.5372  0.0112
mtr —1.3938 0.616575 —2.2606  0.0238
age —0.0206155 0.00704470 —2.9264  0.0034

Mean of dependent variable 1.19017

S.D. of dependent variable 0.723198

Total observations 753

Censored observations 43.2%

o 0.932559

0 —0.929098

To use the pull-down menus, select Model>Nonlinear models>Heckit
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from gretl’s main window. This will reveal the dialog shown in figure 16.4.
Enter lwage as the dependent variable and the 0/1 variable 1fp as the
selection variable. Then enter the desired independent variables for the
regression and selections equations. Finally, select the 2-step estimation
button at the bottom of the dialog box and click OK.

You will notice that the coefficient estimates are identical to the ones
produced manually above. However, the standard errors, which are now
consistently estimated, have changed. The t-ratio of the coefficient on the
inverse Mills ratio, 5\, has fallen to -2.17, but it is still significant at the 5%
level. Gretl also produces the estimates of the selection equation, which
appear directly below those for the regression.

16.9 Using R for Qualitative Choice Models

R is a programming language that can be very useful for estimating
sophisticated econometric models. In fact, many statistical procedures have
been written for R. Although gretl is reasonably powerful, there are still
many things that it won’t do. The ability to export gretl data into R makes
it possible to do some fancy econometrics with relative ease.

To do some of these, you'll need a copy of R and access to its packages.
A package is just a collection of programs written in R that make it easier
to use for specific tasks. Below, we use a package to read in data saved in
Stata’s format and another to estimate qualitative choice models.

The R software package that is used to estimate qualitative choice models
is called MCMCpack. MCMCpack stands for Markov Chain Monte Carlo
package and it can be used to estimate every qualitative choice model in
this chapter. We will just use it to estimate multinomial logit, conditional
logit, and ordered probit. So, let’s take a quick look at MCMCpack and
what it does.

The Markov chain Monte Carlo (MCMC) methods are basic numerical
tools that are often used to compute Bayesian estimators. In Bayesian anal-
ysis one combines what one already knows (called the prior) with what is
observed through the sample (the likelihood function) to estimate the pa-
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Figure 16.4: Choose Model>Nonlinear models>Heckit from gretl’s main
window to reveal the dialog box for Heckit.
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rameters of a model. The information available from the sample information
is contained in the likelihood function; this is the same likelihood function
discussed in your book. If we tell the Bayesian estimator that everything
we know is contained in the sample, then the two estimators are essentially
the same. That is what happens with MCMCpack under its defaults. The
biggest difference is in how the two estimators are computed. The MLE is
computed using numerical optimization of the likelihood function, whereas
MCMCpack uses simulation to accomplish virtually the same thing. See
Lancaster (2004) or Koop (2003) for an introduction to Bayesian methods
and its relationship to maximum likelihood.

The MCMC creates a series of estimates—called a (Markov) chain-and
that series of estimates has a probability distribution. Under the proper
circumstances the probability distribution of the chain will mimic that of the
MLE. Various features of the chain can be used as estimates. For instance,
the sample mean is used by MCMCpack to estimate the parameters of the
multinomial logit model. MCMCpack uses variation within the chain to
compute the MLE variance covariance matrix, which is produced using the
summary command.

One piece of information that you must give to MCMCpack is the desired
length of your Markov chain. In the examples here, I chose 20,000, which is
the number used in the sample programs included in MCMCpack. Longer
chains tend to be more accurate, but take longer to compute. This number
gets us pretty close to the MLEs produced by Stata.

16.9.1 Multinomial Logit

The program code to estimate the multinomial logit example is shown
below:

library(foreign)
nels <- read.dta("C:/Data/Stata/nels_small.dta")

library (MCMCpack)

posterior <- MCMCmnl(nels$psechoice ~
nels$grades, mcmc=20000)

summary (posterior)
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First, read the Stata dataset nels_small.dta? into an object we will call
nels. This requires you to first load the foreign library in R using the
command library(foreign). The read.dta( ) command reads data in
Stata’s format; its argument points to the location on your computer where
the Stata dataset resides. Refer to sections D.1 and D.2 for a brief intro-
duction to packages and reading Stata datasets in R.

Then load MCMCpack library into R. The next line calls the multinomial
logit estimator (MCMCmnl). The first argument of MCMCmnl is the dependent
variable nels$psechoice, followed by a ~, and then the independent vari-
able nels$grades. The last argument tells R how many simulated values to
compute, in this case 20,000. The results of the simulation are stored in the
object called posterior. Posterior is the name given in the Bayesian liter-
ature to the probability distribution of the estimates. The mean or median
of this distribution is used as a point estimate (vis-a-vis the MLE). The last
line of the program requests the summary statistics from the Markov chain.
The results appear in Figure 16.5 In the MNL model, the estimates from

Figure 16.5: Multinomial logit results from the MCMCmnl estimator in R
RRConsule E]@

F SWmMAr ¥ [posSterior

Icerations = 1001:Z1000
Thinning interval = 1

Nunber of chains = 1

Sample size per chain = 20000

1. Empirical mean and standard deviation for each wvariable,
plus standard error of the mean:

Mean 3D Naive 3E Time-series 3SE
(Intercept).2 2.5264 0.42003 0.0029700 0.0027186
(Intercepc) .3 5.5023 0.4062Z2 0.0025724 0.0027793
nelsfgrades.2 -0.3111 0.05232 0.0003700 0.0003 449
nels§grades.3 -0.7102 0.05322 0.0003764 0.0003627
Z. CQuantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept).2 1.7145 2.2451 2.5221 2.8053 3.3548
(Intercept) .3 5.0279 5.5260 5.7901 6.0687 6.6434
nelsfgrades.2 -0.4151 -0.3463 -0.3108 -0.2761 -0.2092
nelsfgrades.3 -0.8196 -0.7445 -0.7088 -0.6743 -0.6080

> |

MCMCpack are a little different from those produced by Stata, but they are
reasonably close.

2This should be available from the POE website.
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To compute predicted probabilities and marginal effects, you can use the
following script for inspiration:

library(foreign)

nels <- read.dta("C:/Data/Stata/nels_small.dta")

library (MCMCpack)

posterior <- MCMCmnl(nels$psechoice ~
nels$grades, mcmc=20000)

summary (posterior)

summary (nels$grades)

g5 <- quantile(nels$grades, .05)
950 <- quantile(nels$grades, .5)

b12 <- mean(posterior[,1])
b13 <- mean(posterior[,2])
b22 <- mean(posterior[,3])
b23 <- mean(posterior[,4])

"No College probabilities"

pl_50 <- 1/(1+exp(b12+b22*q50)+exp (b13+b23*q50))
pl_5 <- 1/(1+exp(b12+b22xq5)+exp (b13+b23*q5))
pl_50

pl_5

"Marginal effects, No College"

p2_50 <- 1/(1+exp(b12+b22%(q50+1))+exp(b13+b23*(q50+1)))
p2_5 <= 1/(1+exp(b12+b22x(g5+1) ) +exp(b13+b23*(g5+1)))
p2_50-p1_50

p2_5-p1_5

"2 Year college probabilities"

p1_50 <- exp(b12+b22*q50)/ (1+exp(b12+b22*q50) +exp (b13+b23*q50))
pl_5 <- exp(b12+b22%q5)/ (1+exp(b12+b22*q5) +exp (b13+b23*qg5))
pl1_50

pl_5

"Marginal effects, 2 Year College"
p2_50 <- exp(b12+b22%(q50+1))/
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(1+exp (b12+b22% (q50+1) ) +exp (b13+b23% (q50+1)))
p2_5 <- exp(b12+b22*(q5+1))/

(1+exp (b12+b22%* (g5+1) ) +exp (b13+b23* (g5+1)))
p2_50-p1_50
p2_5-p1_5

"4 Year college probabilities"

p1_50 <- exp(b13+b23*q50)/(1+exp(b12+b22*q50) +exp (b13+b23%q50) )
pl_5 <- exp(b13+b23*q5)/ (1+exp(b12+b22*q5) +exp (b13+b23*q5))
pl1_50

pl_5

"Marginal effects, 4 Year college"
p2_50 <- exp(b13+b23*(q50+1))/
(1+exp(b12+b22* (q50+1) ) +exp (b13+b23* (q50+1)))
p2_5 <- exp(b13+b23*(q5+1))/
(1+exp (b12+b22%* (g5+1) ) +exp (b13+b23* (g5+1)))
p2_50-p1_50
p2_5-p1_5

16.9.2 Conditional Logit

In this example I'll show you how to use MCMCpack in R to estimate
the conditional logit model.

The first order of business is to get the data into a format that suits
R. This part is not too pretty, but it works. The data are read in from a
Stata dataset using the read.dta function that is included in the foreign
library. The data are assigned (<-) to the object cola. The attach(cola)
statement is not necessary, but including it will enable you to call each of the
variables in the object cola by name. For example, cola$price refers to
the variable named price in the object named cola. Once the data object
cola is attached, you can simply use price to refer to the variable without
prefixing it with the object to which it belongs (i.e., cola$).

The data in the original Stata dataset are arranged

> colal1:12,]
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obs id choice price feature display

1 1 0 1.79 0 0
2 1 0 1.799 0 O
3 1 1 1.79 0 O
4 2 0 1.799 0 0
5 2 0 1.79 0 O
6 2 1 0.89 1 1
7 3 0 1.41 0 O
8 3 0 0.8 O 1
9 3 1 0.89 1 0
10 4 O 1.799 0 0

The MCMCpack routine in R wants to see it as

id bev.choice pepsi.price sevenup.price coke.price

1 3 1.79 1.79 1.79
2 3 1.79 1.79 0.89
3 3 1.41 0.84 0.89
4 3 1.79 1.79 1.33

where each line represents an individual, recording his choice of beverage
and each of the three prices he faces. The goal then is to reorganize the
original dataset so that the relevant information for each individual, which
is contained in 3 lines, is condensed into a single row. To simplify the
example, I dropped the variables not being used.

Most of the program below is devoted to getting the data into the proper
format. The line

pepsi.price <- cola$pricelseq(l,nrow(cola),by=3)]

creates an object called pepsi.price. The new object consists of every third
observation in cola$price, starting with observation 1. The square brackets
[| are used to take advantage of R’s powerful indexing ability. The function
seq(1,nrow(cola),by=3) creates a seqence of numbers that start at 1,
increment by 3, and extends until the last row of colai.e., [1369 ...5466].
When used inside the square brackets, these numbers constitute an index
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of the object’s elements that you want to grab. In this case the object is
cola$price. The sevenup.price and coke.price lines do the same thing,
except their sequences start at 2 and 3, respectively.

The next task is to recode the alternatives to a single variable that takes
the value of 1, 2 or 3 depending on a person’s choice. For this I used the
same technique.

pepsi <- cola$choice[seq(l,nrow(cola),by=3)]
sevenup <- 2*cola$choice[seq(2,nrow(cola),by=3)]
coke <- 3*cola$choice[seq(3,nrow(cola),by=3)]

The first variable, pepsi, takes every third observation of cola$choice
starting at the first row. The variable will contain a one if the person
chooses Pepsi and a zero otherwise since this is how the variable choice
is coded in the Stata file. The next variable for Sevenup starts at 2 and
the sequence again increments by 3. Since Seven-up codes as a 2 the ones
and zeros generated by the sequence get multiplied by 2 (to become 2 or 0).
Coke is coded as a 3 and its sequence of ones and zeros is multiplied by 3.
The three variables are combined into a new one called bev.choice that takes
the value of 1,2, or 3 depending on a person’s choice of Pepsi, Seven-up, or
Coke.

Once the data are arranged, load the MCMCpack library and use MCM-
Cmnl to estimate the model. In the conditional logit model uses choice spe-
cific variables. For MCMCmnl choice-specific covariates have to be entered
using a special syntax: choicevar(cvar,"var","choice") where cvar is
the name of a variable in data, var is the name of the new variable to be
created, and choice is the level of bev.choice that cvar corresponds to.

library(foreign)
cola <- read.dta("c:/Data/Stata/cola.dta")

attach(cola) # optional
pepsi.price <- cola$price[seq(l,nrow(cola),by=3)]

sevenup.price <- cola$pricelseq(2,nrow(cola),by=3)]
coke.price <- cola$pricel[seq(3,nrow(cola),by=3)]
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pepsi <- cola$choice[seq(1l,nrow(cola),by=3)]
sevenup <- 2*cola$choice[seq(2,nrow(cola),by=3)]
coke <- 3*cola$choice[seq(3,nrow(cola),by=3)]

library (MCMCpack)

posterior <- MCMCmnl (bev.choice
choicevar(coke.price, "cokeprice", "3") +
choicevar(pepsi.price, "cokeprice", "1") +
choicevar(sevenup.price, "cokeprice", "2"),
mcmc=20000, baseline="3")

summary (posterior)

In this example, we specified that we want to normalize the conditional
logit on the coke choice; this is done using the baseline="3" option in
MCMCmnl.

The results appear in Figure 16.6.

Figure 16.6: Conditional logit results from the MCMCoprobit estimator in
R
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16.9.3 Ordered Probit

MCMCpack can also be use to estimate the ordered probit model. It is
very easy and the results you get using the Markov chain Monte Carlo sim-
ulation method are very similar to those from maximizing the likelihood.
In principle the maximum likelihood and the simulation estimator used by
MCMCpack are asymptotically equivalent.? The difference between MCM-
Cpack and Stata’s MLE results occurs because the sample sizes for the
datasets used is small.

library(foreign) nels <- read.dta("C:/userdata/nels_small.dta")
attach(nels)

library (MCMCpack)
posterior <- MCMCoprobit (psechoice

grades, mcmc=20000)
summary (posterior)

The first line loads the foreign package into into your R library. This
package allows you to read in Stata’s datasets. The second line creates the
data object called nels. The attach(nels) statement allows you to refer to
the variables in nels directly by their names.

The next line loads MCMCpack into R. Then the ordered probit estimator
(MCMCoprobit) is called. The first argument of MCMCoprobit is the depen-
dent variable psechoice, followed by a ~, and then the independent variable
grades. The last argument tells R how many simulated values to compute,
in this case 20,000. The results of the simulation are stored in the object
called posterior. The mean or median of this distribution is used as your
point estimate (vis-a-vis the MLE). The last line of the program requests
the summary statistics from the simulated values of the parameters. The
results appear in Figure 16.7, where the MLEs are highlighted in red. One
important difference between MCMCpack and the MLE is in how the re-
sults are reported. The model as specified in your textbook contains no
intercept and 2 thresholds. To include a separate intercept would cause the
model to be perfectly collinear. In MCMCpack, the default model includes
an intercept and hence can contain only one threshold.

30f course, if you decide to use more information in your prior then they can be
substantially different.
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Figure 16.7: Ordered probit results from the MCMCoprobit estimator in R
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The ‘slope’ coefficient 3, which is highlighted in Figure 16.7, is virtually
the same as that reported in Hill et al. (2008). The other results are also
similar and are interpreted like the ones produced in gretl. The intercept
in MCMCpack is equal to —u;. The second cut-off in POE’s no-intercept
model is ps = —(Intercept — ~2), where 7, is the single threshold in the
MCMCpack specification. The standard errors are comparable and you can
see that they are equivalent to 3 or 4 decimal places to those from the MLE.

16.10 Script

open c:\userdata\gretl\data\poe\transport.gdt

probit auto const dtime

genr pl = $coeff (const)+$coeff (dtime)*20

genr dt = dnorm(pl)*$coeff (dtime)

genr p2 = cnorm($coeff (const)+$coeff (dtime)*30)

open c:\userdata\gretl\data\poe\nels_small.gdt
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series y = psechoice - 1
discrete y
probit y const grades

open c:\userdata\gretl\data\poe\olympics.gdt

smpl year = 88 --restrict

genr lpop = log(pop)

genr lgdp = log(gdp)

poisson medaltot const lpop lgdp

genr mft = exp($coeff (const)+$coeff (1pop)*median(lpop) \
+$coeff (1gdp)*median(1gdp))*$coeff (1gdp)

open c:\userdata\gretl\data\poe\mroz.gdt
tobit hours const educ exper age kidsl6
genr H_hat = $coeff (const)+$coeff (educ)*mean(educ) \
+$coeff (exper)*mean(exper) \
+$coeff (age) *mean(age) +$coeff (kidsl6) 1
genr z = cnorm(H_hat/$sigma)
genr pred = zx$coeff (educ)

smpl hours > 0 --restrict
ols hours const educ exper age kidsl6

smpl --full
ols hours const educ exper age kidsl6

#Heckit
open C:\userdata\gretl\data\poe\mroz.gdt

genr kids = (kidsl6+kids618>0)
genr lwage = log(wage)

list X
list W

const educ exper
const mtr age kids educ

probit 1lfp W
genr ind = $coeff(const) + $coeff(age)*age + \
$coeff (educ)*educ + $coeff (kids)*kids + $coeff (mtr)*mtr
genr lambda = dnorm(ind)/cnorm(ind)
ols lwage X lambda
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heckit lwage X ; 1lfp W —--two-step

#Monte Carlo
open C:\userdata\gretl\data\poe\tobit.gdt
smpl 1 200
genr xs = 20*uniform()
loop 1000 --progressive
genr y = -9 + l*xxs + 4*normal()
genr yi =y >0
genr yc = y*yi
ols yc const xs --quiet
genr bls = $coeff(const)
genr b2s = $coeff (xs)
store coeffs.gdt bls b2s
endloop

open C:\userdata\gretl\data\poe\tobit.gdt
genr xs = 20*uniform()

genr idx =1

matrix A = zeros(1000,3)

loop 1000
smpl --full
genr y = -9 + l*xs + 4*normal()

smpl y > 0 --restrict
ols y const xs --quiet
genr bls = $coeff(const)
genr b2s = $coeff(xs)
matrix A[idx,1]=idx
matrix A[idx,2]=bls
matrix A[idx,3]=b2s
genr idx = idx + 1
endloop

A

matrix bb = meanc(4)
bb

And the MNL.inp script for multinomial logit.
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#To get predictions
scalar b22 = thetal[1]

scalar b12 = thetal[2]
scalar b23 = thetal[3]
scalar b13 = thetal[4]

#Use the Quantile function to get the 5% and 50% quantiles
scalar 950 = quantile(grades, .5)
scalar g5 = quantile(grades, .05)

scalar g5 = 2.635

#No College probabilities
scalar pl1_50 = 1/(1+exp(b12+b22*q50)+exp (b13+b23%q50))
scalar pl_5 = 1/(1+exp(b12+b22*qg5)+exp(b13+b23%q5))

#Marginal effects, No College

scalar p2_50 = 1/(1+exp(b12+b22%(q50+1))+exp(b13+b23*(q50+1)))
scalar p2_5 = 1/(1+exp(b12+b22x(g5+1))+exp(b13+b23*(g5+1)))
scalar ml=p2_50-p1_50

scalar m2=p2_5-pl1_5

#2 Year college probabilities
scalar pl1_50 = exp(b12+b22%q50)/(1+exp(b12+b22%q50)\
+exp (b13+b23%q50) )
scalar pl_5 = exp(b12+b22%qg5)/(1+exp(b12+b22%q5)+exp (b13+b23*q5))

#Marginal effects, 2 Year College

scalar p2_50 = exp(bl12+b22x(q50+1))/(1+exp(b12+b22%(gq50+1)) \
+exp (b13+b23*(q50+1)))

scalar p2_5 = exp(b12+b22x(q5+1))/(1+exp(b12+b22* (g5+1))\
+exp (b13+b23% (q5+1)))

scalar m3=p2_50-p1_50

scalar m4=p2_5-pl1_5

#4 Year college probabilities

scalar pl1_50 = exp(b13+b23*q50)/(1+exp(b12+b22%q50) \
+exp (b13+b23%q50))

scalar pl_5 = exp(b13+b23*g5)/(1+exp(b12+b22%q5)\
+exp (b13+b23*g5) )
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#Marginal effects, 4 Year college
scalar p2_50 = exp(b13+b23%(q50+1))/(1+exp(b12+b22x(q50+1))\
+exp (b13+b23*(q50+1)))
scalar p2_5 = exp(b13+b23*(q5+1))/(1+exp(b12+b22x(q5+1))\
+exp (b13+b23* (g5+1)))
scalar mb=p2_50-p1_50
scalar m6=p2_5-pl1_5



Appendix

gretl commands

A.1 Estimation

e ar : Autoregressive estimation

e arima : ARMA model

e corc : Cochrane-Orcutt estimation

e equation : Define equation within a system
e estimate : Estimate system of equations

e garch : GARCH model

e hcem : HCCM estimation

e heckit: Heckit estimation (2-step and MLE)
e hilu : Hildreth-Lu estimation

e hsk : Heteroskedasticity-corrected estimates
e lad : Least Absolute Deviation estimation

e logistic : Logistic regression

312
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e logit : Logit regression

e mle : Maximum likelihood estimation
e mpols : Multiple-precision OLS

e nls : Nonlinear Least Squares

e ols : Ordinary Least Squares

e panel : Panel models

e poisson : Poisson estimation

e probit : Probit model

e pwe : Prais-Winsten estimator

e system : Systems of equations

e tobit : Tobit model

e tsls : Two-Stage Least Squares

e var : Vector Autoregression

e vecm : Vector Error Correction Model

e wls : Weighted Least Squares

A.2 Tests

e addto : Add variables to specified model
e adf : Augmented Dickey-Fuller test

e arch : ARCH test

e chow : Chow test

e coeffsum : Sum of coefficients

e coint : Engle-Granger cointegration test

e coint2 : Johansen cointegration test
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e cusum : CUSUM test

e hausman : Panel diagnostics

e kpss : KPSS stationarity test

e leverage : Influential observations

e Imtest : LM tests

e meantest : Difference of means

e omit : Omit variables

e omitfrom : Omit variables from specified model
e qglrtest : Quandt likelihood ratio test
e reset : Ramseys RESET

e restrict : Linear restrictions

e runs : Runs test

e testuhat : Normality of residual

e vartest : Difference of variances

e vif : Variance Inflation Factors

A.3 Transformation

o diff : First differences

e discrete : Mark variables as discrete
e dummify : Create sets of dummies
e lags : Create lags

e 1diff : Log-differences

e logs : Create logs

e multiply : Multiply variables
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e rhodiff : Quasi-differencing
e sdiff : Seasonal differencing

e square : Create squares of variables

A.4 Statistics

e corr : Correlation coefficients

e corrgm : Correlogram

e freq : Frequency distribution

e hurst : Hurst exponent

e mahal : Mahalanobis distances

e pca : Principal Components Analysis

e pergm : Periodogram

e spearman : Spearmanss rank correlation
e summary : Descriptive statistics

e xtab : Cross-tabulate variables

A.5 Dataset

e addobs : Add observations

e append : Append data

e data : Import from database

o delete : Delete variables

e genr : Generate a new variable
e import : Import data

e info : Information on data set
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e labels : Print labels for variables

e nulldata : Creating a blank dataset

e open : Open a data file

e rename : Rename variables

e setinfo : Edit attributes of variable

e setobs : Set frequency and starting observation
e setmiss : Missing value code

e smpl : Set the sample range

e store : Save data

e transpos : Transpose data

e varlist : Listing of variables

A.6 Graphs

e boxplot : Boxplots

e gnuplot : Create a gnuplot graph
e graph : Create ASCII graph

e plot : ASCII plot

e rmplot : Range-mean plot

e scatters : Multiple pairwise graphs

A.7 Printing

e eqnprint : Print model as equation
e outfile : Direct printing to file

e print : Print data or strings
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printf : Formatted printing

tabprint : Print model in tabular form Prediction

fcast : Generate forecasts

fcasterr : Forecasts with confidence intervals

fit : Generate fitted values

A.8 Programming

break : Break from loop

else

end : End block of commands

endif

endloop : End a command loop
function : Define a function

if

include : Include function definitions
loop : Start a command loop

matrix : Define or manipulate matrices
run : Execute a script

set : Set program parameters

A.9 Utilities

criteria : Model selection criteria
critical : Critical values

help : Help on commands

317
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e modeltab : The model table
e pvalue : Compute p-values
e quit : Exit the program

e shell : Execute shell commands



Appendix

Some Basic Probability Concepts

In Appendix B of POFE you are confronted with some basic concepts
about probability. Since the actual values that economic variables take on
are not actually known before they are observed, we say that they are ran-
dom. Probability is the theory that helps us to express uncertainty about
the possible values of these variables. Each time we observe the outcome
of a random variable we obtain an observation. Once observed, its value is
known and hence it is no longer random. So, there is a distinction to be
made between variables whose values are not yet observed (random vari-
ables) and those whose values have been observed (observations). Keep in
mind, though, an observation is merely one of many possible values that
the variables can take. Another draw will usually result in a different value
being observed.

A probability distribution is just a mathematical statement about the
possible values that our random variable can take on. The probability dis-
tribution tells us the relative frequency (or probability) with which each
possible value is observed. In their mathematical form probability distribu-
tions can be rather complicated; either because there are too many possible
values to describe succinctly, or because the formula that describes them is
complex. In any event, it is common to summarize this complexity by con-
centrating on some simple numerical characteristics that they possess. The
numerical characteristics of these mathematical functions are often referred

319
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to as parameters. Examples are the mean and variance of a probability
distribution. The mean of a probability distribution describes the average
value of the random variable over all of its possible realizations. Concep-
tually, there are an infinite number of realizations therefore parameters are
not known to us. As econometricians, our goal is to try to estimate these
parameters using a finite amount of information available to us.

A statistic is used to gain information about the unknown parameter(s).
We collect a number of realizations (called a sample) and then estimate
the unknown parameters using a statistic. Whereas as a parameter is an
unknown numerical characteristic of a probability distribution, a statistic is
an observable numerical characteristic of a sample. Since the value of the
statistic will be different for each sample drawn, it too is a random variable
and will be characterized by a probability distribution, which is called the
sampling distribution.

Expected values are used to summarize various numerical characteristics
of a probability distributions. For instance, suppose X is a random variable
that can take on the values 0,1,2,3 and these values occur with probability
1/6,1/3,1/3, and 1/6, respectively. The average value or mean of the prob-
ability distribution, designated w, is obtained analytically using its expected
value.

1 3

,u_E[X]_fo(a:)—O'g +3 =1 (B.1)

So, w is a parameter. Its value can be obtained mathematically if we
know the probability density function of the random variable, X. If this
probability distribution is known, then there is no reason to take samples
or to study statistics! We can ascertain the mean, or average value, of a
random variable without every firing up our calculator. Of course, in the
real world we only know that the value of X is not known before drawing
it and we don’t know what the actual probabilities are that make up the
density function, f(z). In order to Figure out what the value of y is, we
have to resort to different methods. In this case, we try to infer what it is
by drawing a sample and estimating it using a statistic.

One of the ways we bridge the mathematical world of probability theory
with the observable world of statistics is through the concept of a population.
A statistical population is the collection of individuals that you are interested
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in studying. Since it is normally too expensive to collect information on
everyone of interest, the econometrician collects information on a subset of
this population—in other words, he takes a sample.

The population in statistics has an analogue in probability theory. In
probability theory one must specify the set of all possible values that the
random variable can be. In the example above, a random variable is said to
take on 0,1,2, or 3. This set must be complete in the sense that the variable
cannot take on any other value. In statistics, the population plays a similar
role. It consists of the set that is relevant to the purpose of your inquiry
and that is possible to observe. Thus it is common to refer to parameters
as describing characteristics of populations. Statistics are the analogues to
these and describe characteristics of the sample.

This roundabout discussion leads to an important point. We often use
the words mean, variance, covariance, correlation rather casually in econo-
metrics, but their meanings are quire different depending on whether we
are refereing to random variables or merely a realization from one partic-
ular sample. When referring to the analytic concepts of mean, variance,
covariance, and correlation we are specifically talking about characteristics
of random variables whose behavior is characterized by a probability dis-
tribution; the expected values can only be ascertained through complete
knowledge of the probability distribution functions. It is common to refer
to them in this sense as population mean, population variance, and so on.

In statistics we attempt to estimate these (population) parameters using
samples and explicit formulae. For instance, we might use the average value
of a sample to estimate the average value of the population (or probability
distribution).

| Probability Distribution | Sample
mearn ElX]=p Iy ai=%
variance E[X — u)? =o? ﬁ (2 — 7)2 = 52

When you are asked to obtain the mean or variance of random variables,
make sure you know whether the person asking wants the characteristics of
the probability distribution or of the sample. The former requires knowledge
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of the probability distribution and the later requires a sample.

In gretl you are given the facility to obtain sample means, variances,
covariances and correlations. You are also given the ability to compute tail
probabilities using the normal, t-, F and chisquare distributions. First we’ll
examine how to get summary statistics.

Summary statistics usually refers to some basic measures of the numer-
ical characteristics of your sample. In gretl , summary statistics can be
obtained in at least two different ways. Once your data are loaded into
the program, highlight the desired variables with your cursor and select
View>Summary statistics from the pull-down menu. Which leads to the

Figure B.1: Choosing summary statistics from the pull-down menu

H gretl g@

Eile Tools Data W¥iew add Sample varisble Model Help

cola.gdt Icon view |
ID# | Yariable name Graph specified vars 3
0 const
id
choice

Multiple graphs 3

Summary skatistics
Correlation matrix
Cross Tabulation
Principal components
Mahalanobis distances

price
Featurs
display

oA W e

Undated: Full range 1 - 5466

BEOEERe Ll i O

output in Figure B.2. The other way to get summary statistics is from the
console or script. Recall, gretl is really just a language and the GUI is a
way of accessing that language. So, to speed things up you can do this.
Load the dataset and open up a console window. Then type summary. This
produces summary statistics for all variables in memory. If you just want
summary statistics for a subset, then simply add the variable names after
summary, i.e., summary x gives you the summary statistics for the variable
X.
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Figure B.2: Choosing summary statistics from the pull-down menu yields
these results.

“ gretl: summary statistics E]@
[ m x
Summary S3tatistics, using the observations 1 - 5466

Varishle HMELN MEDIAN MIN MAX

id 911.50 911.50 1.0000 182z.0

choice 0.33333 0.0o0oo0o 0.oooao 1.0000

price 1.1851 1.1500 0.1a6000 Z.5900

feature 0.505875 1.0000 0.oooao 1.0000

display 0.36352 0.0o0oo0o 0.oooao 1.0000

Varishle 3.D. C.V. SEEW EXCIEURT

id 5z26.01 o.57709 0.oooao —-1.z000

choice 0.47145 1.4143 0.70711 —-1.5000

price 0.30598 0.25518 0.24079 -0.34453

feature 0.499397 0.95268 -0.035132 -1.9988

display 0.45106 1.3233 0.56747 -1.6780

]

Gretl computes the sample mean, median, minimum, maximum, stan-
dard deviation (S.D.), coefficient of variation (C.V.), skewness and excess
kurtosis for each variable in the data set. You may recall from your intro-
ductory statistics courses that there are an equal number of observations
in your sample that are larger and smaller in value than the median. The
standard deviation is the square root of your sample variance. The coef-
ficient of variation is simply the standard deviation divided by the sample
mean. Large values of the C.V. indicate that your mean is not very precisely
measured. Skewness is a measure of the degree of symmetry of a distribu-
tion. If the left tail (tail at small end of the the distribution) extends over a
relatively larger range of the variable than the right tail, the distribution is
negatively skewed. If the right tail covers a larger range of values then it is
positively skewed. Normal and t-distributions are symmetric and have zero
skewness. The x2 is positively skewed. Excess kurtosis refers to the fourth
sample moment about the mean of the distribution. ‘Excess’ refers to the
kurtosis of the normal distribution, which is equal to three. Therefor if this
number reported by gretl is positive, then the kurtosis is greater than that
of the normal; this means that it is more peaked around the mean than the
normal. If excess kurtosis is negative, then the distribution is flatter than
the normal.
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Sample Statistic

Formula

Mean

Variance

Standard Deviation

Coefficient of Variation

Skewness

Excess Kurtosis

Yxi/n==7
o X 1) =

s = 152 You can also use gretl

1 Y (xi — 7)3 /s

T Yol — @) st - 3

to obtain tail probabilities for various distributions. For example if X ~

N(3,9) then P(X >4) is

P[X > 4] = P[Z > (4 — 3)/V9] = P[Z > 0.334]=0.3694 (B.2)

To obtain this probability, you can use the Tools>P-value finder from
the pull-down menu. Then, give gretl the value of X, the mean of the
distribution and its standard deviation using the dialog box shown in Figure
B.3. The result appears in Figure B.4. You can use a script to do this as

Figure B.3: Dialog box for finding right hand side tail areas of various

probability distributions.

Egretl: p-value finder E]@-\

normal | b | chi-square | F || gamma | binarial | poissan

mean |3
std, deviakion |3

value |4

| X Close | <:9QK

well. First, convert 4 to a standard normal. That means, subtract its mean,
3, and divide by its standard error, v/9. The result is a scalar so, open a

script window and type:
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Figure B.4: Results from the p value finder of P[X > 4] where X ~ N(3,9).
Note, the area in the tail of this distribution to the right of 4 is .369441.

ngetl: p-value g@
[@ x

Standard normal: area to the right of 0.333333 = 0.3659441
[two-taliled wvalue = 0.738883; complement = 0.261117)

scalar z1 = (4-3)/sqrt(9)

Then use the cdf function to compute the tail probability of z1. For the
normal cdf this is

scalar cl = 1-cdf(z,z1)

The first argument of the cdf function, z, identifies the probability distri-
bution and the second, z1, the number to which you want to integrate. So
in this case you are integrating a normal cdf from minus infinity to z1=.334.
You want the other tail (remember, you want the probability that Z is
greater than 4) so subtract this value from 1.

In your book you are given another example X ~ N(3,9) then find
P(A< X <6)is

PA<X <6 =P[0334<z<1=P[Z<1]-P[Z<.33  (B3)

Take advantage of the fact that P[Z < z] =1 — P[Z > z| to obtain use the
pvalue finder to obtain:

(1—0.1587) — (1 — 0.3694) = (0.3694 — 0.1587) = 0.2107 (B.4)

Note, this value differs slightly from the one given in your book due to
rounding error that occurs from using the normal probability table. When
using the table, the P[Z < .334] was truncated to P[Z < .33]; this is because
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your tables are only taken out to two decimal places and a practical decision
was made by the authors of your book to forgo interpolation (contrary to
what your Intro to Statistics professor may have told you, it is hardly ever
worth the effort to interpolate when you have to do it manually). Gretl,
on the other hand computes this probability out to machine precision as
PlZ < %] Hence, a discrepancy occurs. Rest assured though that these

results are, aside from rounding error, the same.

Using the cdf function makes this simple and accurate. The script is

scalar zl1 = (4-3)/sqrt(9)
scalar z2 = (6-3)/sqrt(9)
scalar cl = cdf(z,z1)
scalar c2 = cdf(z,z2)

scalar area = c2-cil
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Some Statistical Concepts

The hip data are used to illustrate computations for some simple statis-
tics in your text.

C.1 Summary Statistics

Using a script or operating from the console, open the hip data, hip.gdt,
and issue the summary command. This yields the results shown in Table
C.1. This gives you the mean, median, minimum, maximum, standard de-
viation, coefficient of variation, skewness and excess kurtosis of your vari-
able(s). Once the data are loaded, you can use gretl’s language to gen-
erate these as well. For instance, genr hip_bar = mean(hip) yields the
mean of the variable hip. To obtain the sample variance use genr s2hat
= sum((hip-mean(hip)" 2)/($nobs-1). The script below can be used to
compute other summary statistics as discussed in your text.

open c:\userdata\gretl\data\poe\hip.gdt
summary

genr hip_bar = mean(hip)

genr s2hat = sum((hip-mean(hip))~2)/($nobs-1)
genr varYbar = s2hat/$nobs

327
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Table C.1: Summary statistics from the hip data
? open c:\userdata\gretl\data\poe\hip.gdt

Read datafile c:\userdata\gretl\data\poe\hip.gdt periodicity: 1,
maxobs: 50, observations range: 1-50

Listing 2 variables:
0) const 1) hip

? summary

Summary Statistics, using the observations 1 - 50
for the variable ’hip’ (50 valid observations)

Mean 17.158
Median 17.085
Minimum 13.530
Maximum 20.400
Standard deviation 1.8070
C.V. 0.10531
Skewness -0.013825
Ex. kurtosis -0.66847
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genr sdYbar = sqrt(varYbar)

genr sig_tild = sqrt(sum((hip-mean(hip))~2)/($nobs))
genr mu3 = sum((hip-mean(hip))~3)/($nobs)

genr mud4 = sum((hip-mean(hip))~4)/($nobs)

Then, to estimate skewness, S = %/53, and kurtosis, K = ji*/5%:

genr skew = mu3/sig_tild~3
genr kurt = mu4/sig_tild"4

Note, in gretl’s built in summary command, the excess kurtosis is re-
ported. The normal distribution has a theoretical kurtosis equal to 3 and
the excess is measured relative to that. Hence, Excess K = i*/6% — 3

If hip size in inches is normally distributed, Y ~ N(u,o?). Based on our
estimates, Y ~ N(17.158,3.265). The percentage of customers having hips
greater than 18 inches can be estimated.

P(Y>18):P<Y_“>18_“> (C.1)

g (o2

Replacing p and o by their estimates yields

genr zs = (18 - mean(hip))/sqrt(s2hat)
pvalue z zs

The last line actually computes the p-value associated with z-score. So, the
pvalue command requests that a p-value be returned, the second argument
(z) indicates the distribution to be used (in this case, z indicates the normal),
and the final argument (zs) is the statistic itself, which is computed in the
previous line.

C.2 Interval Estimation

Estimating a confidence interval using the hip data is also easy to do in
gretl. Since the true variance, o2, is not known, the t-distribution is used
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to compute the interval. The interval is

o
vIN
where ¢, is the desired critical value from the student-t distribution. In our
case, N = 50 and the desired degrees of freedom for the t-distribution is
N —1 = 49. The gretl command critical(t,49,.025 can be used to

return the 0.025 critical value from the t49 distribution shown in Figure C.1
The computation is

ytie (C.2)

Figure C.1: Obtaining critical values from the t distribution using the con-
sole

“ gretl console g@
@ x

gretl console: type 'help' for a list of comands
P oo = critical (.49, .025)

Replaced scalar oo (ID 3) = 2.00955

7|

open c:\userdata\gretl\data\poe\hip.gdt

genr s2hat = sum((hip-mean(hip))~2)/($nobs-1)
genr varYbar = s2hat/$nobs

genr sdYbar = sqrt(varYbar)

genr 1b = mean(hip) - 2.01%sdYbar

mean(hip) + 2.01*sdYbar

genr ub

which indicates that the interval [16.64,17.67] works 95% of the time. Note
these numbers differ slightly from those in your book because we used 2.01
as our critical value. Hill et al. carry their critical value out to more decimal
places and hence the difference. You can use gretl’s internal functions to
improve accuracy. Replace 2.01 with critical (t,$nobs-1,0.025) and see
what happens!

genr 1b = mean(hip) - critical(t,$nobs-1,0.025)*sdYbar
genr ub = mean(hip) + critical(t,$nobs-1,0.025)*sdYbar
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C.3 Hypothesis Tests

Hypothesis tests are based on the same principles and use the same
information that is used in the computation of confidence intervals. The
first test is on the null hypothesis that hip size does not exceed 16.5 inches
against the alternative that it does. Formally, Hy : p = 16.5 against the
alternative H, : p > 16.5. The test statistic is computed based on the
sample average, Y and is

L Y —165 .
sVN T
if the null hypothesis is true. Choosing the significance level, o = .05, the

right-hand side critical value for the t49 is 1.677. The average hip size is
17.1582 with standard deviation 1.807 so the test statistic is

17.1582 — 16.5
1.807/+/50

The gretl code to produce this is:

(C.3)

= 2.576 (C.4)

open c:\userdata\gretl\data\poe\hip.gdt

genr s2hat = sum((hip-mean(hip))~2)/($nobs-1)
genr varYbar = s2hat/$nobs

genr sdYbar = sqrt(varYbar)

genr tstat = (mean(hip)-16.5)/(sdYbar)

scalar ¢ = critical(t,49,0.025)

pvalue t 49 tstat

The scalar ¢ = critical(t,49,0.025) statement can be used to get the
a = 0.025 critical value for the t distribution with 49 degrees of freedom. The
next line, pvalue t 49 tstat, returns the p-value from the t distribution
with 49 degrees of freedom for the computed statistic, tstat.

The two-tailed test is of the hypothesis, Hy : ¢ = 17 against the alter-
native, Hy : p # 17.

R L
s/vN !

(C.5)
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if the null hypothesis is true. Choosing the significance level, o = .05, the
two sided critical value is +2.01. Hence, you will reject the null hypothesis
if t < —2.01 or if t > 2.01. The statistic is computed

17.1582 - 17
1.807/v/50

and you cannot reject the null hypothesis. The gretl code is:

= .6191 (C.6)

genr tstat = (mean(hip)-17)/(sdYbar)
scalar ¢ = critical(t,49,0.025)
pvalue t 49 tstat

C.4 Testing for Normality

Your book discusses the Jarque-Bera test for normality which is com-
puted using the skewness and kurtosis of the least squares residuals. To
compute the Jarque-Bera statistic, you’ll first need to obtain the summary
statistics from your data series.

From gretl script

open c:\userdata\gretl\data\poe\hip.gdt
summary

You could also use the point and click method to get the summary statistics.
This is accomplished from the output window of your regression. Simply
highlight the hip series and then choose Data>Summary statistics>selected
variables from the pull-down menu. This yields the results in Table C.1.

One thing to note, gretl reports excess kurtosis rather than kurtosis.
The excess kurtosis is measured relative to that of the normal distribution
which has kurtosis of three. Hence, your computation is

N
JB=— (Skewness2 +

(Excess Kurtosis)2>
6

; (C.7)
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Which is
_ 50

JB o (—0.01382 +

. 2
066847) = .9325 (C.8)

Using the results in section C.1 for the computation of skewness and kurtosis,
the gretl code is:

open c:\userdata\gretl\data\poe\hip.gdt

genr sig_tild = sqrt(sum((hip-mean(hip))~2)/($nobs))
genr mu3 = sum((hip-mean(hip))~3)/($nobs)

genr mu4 = sum((hip-mean(hip))~4)/($nobs)

genr skew
genr kurt

mu3/sig_tild"3
mu4/sig_tild~4

genr JB = ($nobs/6)*(skew”2+(kurt-3)~2/4)
pvalue X 2 JB
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Using R with gretl

Another feature of gretl that makes it extremely powerful is its ability
to work with another free program called R. R is actually a programming
language for which many statistical procedures have been written. Although
gretl is reasonably powerful, there are still many things that it won’t do.
The ability to export gretl data into R makes it possible to do some sophis-
ticated analysis with relative ease.

Quoting from the R web site

R is a language and environment for statistical computing and
graphics. It is a GNU project which is similar to the S language
and environment which was developed at Bell Laboratories (for-
merly AT&T, now Lucent Technologies) by John Chambers and
colleagues. R can be considered as a different implementation of
S. There are some important differences, but much code written
for S runs unaltered under R.

R provides a wide variety of statistical (linear and nonlinear
modeling, classical statistical tests, time-series analysis, classifi-
cation, clustering, ...) and graphical techniques, and is highly ex-
tensible. The S language is often the vehicle of choice for research
in statistical methodology, and R provides an Open Source route
to participation in that activity.

334
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One of R’s strengths is the ease with which well-designed publication-
quality plots can be produced, including mathematical symbols
and formulae where needed. Great care has been taken over the
defaults for the minor design choices in graphics, but the user
retains full control.

R is available as Free Software under the terms of the Free Soft-
ware Foundation’s GNU General Public License in source code
form. It compiles and runs on a wide variety of UNIX platforms
and similar systems (including FreeBSD and Linux), Windows
and MacOS.

R can be downloaded from http://www.r-project.org/ which is re-
ferred to as CRAN or the comprehensive R archive network. To install R,
you’ll need to download it and follow the instructions given at the CRAN
web site. Also, there is an appendix in the gretl manual about using R
that you may find useful. The remainder of this brief appendix assumes
that you have R installed and linked to gretl through the programs tab
in the File>Preferences>General pull down menu. Make sure that the
‘Command to launch GNR R’ box points to the RGui.exe file associated
with your installation of R.

To illustrate, open the food.gdt data in gretl.

open c:\userdata\gretl\data\poe\food.gdt

Now, select Tools>start GNU R from the pull-down menu. The current
gretl data set, in this case food.gdt, will be transported into R’s required
format. You’ll see the R console which is shown in Figure D.1.

To load the data in properly, type the following at the command prompt
in R.

gretldata <-
read.table("C:/userdata/myfiles/Rdata.tmp", header = TRUE )

This assumes that you have set gretl’s user directory to C: \userdata\myfiles
using the dialog box shown in Figure (D.2). Tools>Preferences>General
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Figure D.1: The R console when called from Gretl
R R Console g@

R wersion 2.6.0 [(Z007-10-03)
Copyright (C) 2007 The R Foundation for Statistical Computing
ISEN 3-900051-07-0

E is free software and cowes with ABSCLUTELY NC WARRANTY.
Tou are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence|)' for distribution details.

Natural language support but running in an English locale

R is a collasborative project with many contributors.
Type 'contributors()' for more information and
'citation() ' on how to cite R or R packages in publications.

Type 'dewo()' for some demos, 'help()' for on-line help, or
'help.start () ' for an HTHML browser interface to help.
Type 'gf)' to guit R.

> # load data from gretl
library (stats)

k4

> wnum <- as.double (R.versionimajor) + (as.double(R.version$minor) / 10.0)
> if f(wnwm > 2.41) libraryiutils)
> gretldata <- read.table("C:/Documents and Settings/Lee/Application Data/gretli

> attachgretldata)

(<] 11l B

Figure D.2: Use this dialog to set the default location for gretl files to be
written and read.

Ed gretl: options

3li | Databases | Programs | File ©pen/Save | HCCME | Manuals

Main gretl direckory | cuserdataigretl
User's gretl direckory | CiiuserdatalmyFiles)

[] Expert mode {no warnings) [ Tell me about gretl updates

Show gretl toolbar Use locale setting for decimal poink

Emnulate: Windows look, [ Allows shell commands

(#) Use Cholesky decomposition

(") Use QR decomposition

of Apphy l l X Cancel

| P |
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The addition of Header = TRUE to the code that gretl writes for you en-
sures that the variable names, which are included on the first row of the
Rdata.tmp, get read into R properly. Then, to run the regression in R.

fitols <- 1lm(y~x,data=gretldata)

Figure D.3: The 1lm(y x,data=gretldata) command estimates a linear
regression model with y as the dependent variable and x as an independent
variable. R automatically includes an intercept. To print the results to the
screen, you have to use the summary (anov) command.

R R Console g@

> summary (fitols)

Call:
lm(formila = v ~ x, data = gretldata)

Residuals:
Min 1Q Hedian 30 Hax
—-Z23.025 -50.816 -6.324 67.879 Z1zZ.044

Coefficients:

Estimate 23td. Error £ wvalue Prix|t|
[Intercept) 53.416 43.410 1.9:22 0.0622 .
X 10.210 z2.093 4,877 1.95e-05 #***

Signif. codes: 0O **#**f 0,001 *** 0,01 *** 0,05 *.7 0.1 * * 1
Residual standard error: §9.52 on 38 degrees of freedom
Multiple R-Sgquared: 0.385, Adjusted R-sguared: E.SSSS
F-statistic: 23.79 on 1 and 35 DF, p-value: 1.946e-05

>

Before going further, let me comment on this terse piece of computer code.
First, in R the symbol <- is used as the assignment operator; it assigns
whatever is on the right hand side (1m(y~x,data=gretldata)) to the name
you specify on the left (fitols). it can be reversed -> if you want to call the
object to its right what is computed on its left. Also, R does not bother to
print results unless you ask for them. This is handier than you might think,
since most programs produce a lot more output than you actually want
and must be coerced into printing less. The 1m command stands for ‘linear
model’ and in this example it contains two arguments within the parentheses.
The first is your simple regression model. The dependent variable is y and
the independent variable . They are separated by the symbol  which
substitutes in this case for an equals sign. The other argument points to the
data set that contains these two variables. This data set, pulled into R from
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gretl, is by default called gretldata. There are other options for the 1m
command, and you can consult the substantial pdf manual to learn about
them. In any event, you’ll notice that when you enter this line and press
the return key (which executes this line) R responds by issuing a command
prompt, and no results! To print the results from your regression, you issue
the command:

summary.lm(fitols)

which yields the output shown in Figure D.4. Then, to obtain the ANOVA
table for this regression

anova(fitols)

This gives the result in Figure D.4. It’s that simple! One thing to note

Figure D.4: The anova(olsfit) command asks R to print the anova table
for the regression results stored in olsfit.

R R Console E]@

> anoval(fitols)
Analysi=s of Variance Table

Response: ¥y

Df Zum 3g Mean 3g F walue Pr(=F)
* 1 190627 190627 23.789 1.946e-05 **+
Residuals 35 304505 8013
Signif. codes: 0O **#**f 0,001 *** 0,01 *** 0.05 *.7 0.1 * * 1

> |

about how R reports analysis of variance. It reports the explained variation
(190627) in the top line and the unexplained variation in y (304505) below. It
does not report total variation. To obtain the total, you just have to add the
explained to the unexplained variation together (190627+304505=495132).

To do multiple regression in R, you have to put each of your independent
variables (other than the intercept) into a matrix. A matrix is a rectangular
array (which means it contains numbers arranged in rows and columns). You
can think of a matrix as the rows and columns of numbers that appear in
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a spreadsheet program like MS Excel. Each row contains an observation on
each of your independent variables; each column contains all of the observa-
tions on a particular variable. For instance suppose you have two variables,
z1 and x2, each having 5 observations. These can be combined horizontally
into the matrix, X. Computer programmers sometimes refer to this op-
eration as horizontal concatenation. Concatenation essentially means that
you connect or link objects in a series or chain; to concatenate horizontally
means that you are binding one or more columns of numbers together.

The function in R that binds columns of numbers together is cbind. So,
to horizontally concatenate z1 and x2 use the command

X <- cbind(x1,x2)

which takes

xl = r2 = , and yields X =

N N Ot =N
=W =N
N NN Ot =N
— W~ N

Then the regression is estimated using
fitols <- 1lm(y~X)

There is one more thing to mention about R that is very important and
this example illustrates it vividly. R is case sensitive. That means that two
objects x and X can mean two totally different things to R. Consequently,
you have to be careful when defining and calling objects in R to get to
distinguish lower from upper case letters.

D.1 Packages

The following section is taken with very minor changes from Venables
et al. (2006).
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All R functions and datasets are stored in packages. Only when a package
is loaded are its contents available. This is done both for efficiency (the
full list would take more memory and would take longer to search than a
subset), and to aid package developers, who are protected from name clashes
with other code. The process of developing packages is described in section
Creating R packages in Writing R Extensions. Here, we will describe them
from a users point of view. To see which packages are installed at your site,
issue the command library() with no arguments. To load a particular
package (e.g., the MCMCpack package containing functions for estimating
models in Chapter 16) use the library command:

> library(MCMCpack)

If a package is not installed you can do so if you are connected to the
Internet using the install.packages() function. To update a package
that is already installed use the update.packages() functions. Both of
these are available through the Packages menu in the Windows GUI.

To see which packages are currently loaded, use

> search()

to display the search list.

To see a list of all available help topics in an installed package, use

> help.start()

to start the HT'ML help system, and then navigate to the package listing in
the Reference section.

D.2 Stata Datasets

With R you can read in datasets in many different formats. Your text-
book includes a dataset written in Stata’s format and R can both read and
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write to this format. To read and write Stata’s .dta files, you’ll have to load
the foreign package using the library command:

library(foreign)

Then, type

nels <- read.dta("c:/DATA/Stata/nels_small.dta")

and the dataset will be read directly into R. There are two things to note,
though. First, the slashes in the filename are backwards from the Windows
convention. Second, you need to point to the file in your directory structure
and enclose the path/filename in double quotes. R looks for the the file
where you’ve directed it and, provided it finds it, reads it into memory. It
places the variable names from Stata into the object. Then, to retrieve a
variable from the object you create (called in this example, data, use the
syntax

pse <- nels$psechoice

Now, you have created a new object called pse that contains the variable
retrieved from the nels object called psechoice. This seems awkward at
first, but believe it or not, it becomes pretty intuitive after a short time.

The command

attach(nels)

will take each of the columns of nels and allow you to refer to them by their
variable names. So, instead of referring to nels$psechoice you can directly
ask for psechoice without using the nels$ prefix. For complex programs,
using attach() may lead to unexpected results. If in doubt, it is probably
a good idea to forgo this option. If you do decide to use it, you can later
undo it using detach(nels).
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D.3 Final Thoughts

A very brief, but useful document can be found at http://cran.r-project.
org/doc/contrib/Farnsworth-EconometricsInR.pdf. This is a guide writ-
ten by Grant Farnsworth about using R in econometrics. He gives some
alternatives to using MCMCpack for the models discussed in Chapter 16.


http://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf
http://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf

Appendix

Errata

e page 49. Syntax for pvalue(t,3df,t2) is fixed. This applies the script
in chapter 3 as well. Thanks to Greg Coleman.
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GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other
functional and useful document “free” in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this Li-
cense preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by oth-
ers.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements

344
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the GNU General Public License, which is a copyleft license designed for
free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions
stated herein. The “Document”, below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as “you”.
You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that says
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that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety
of formats suitable for input to text formatters. A copy made in an other-
wise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.
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A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on the meaning of
this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright no-
tices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover



APPENDIX F. GNU FREE DOCUMENTATION LICENSE 348

Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they pre-
serve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin dis-
tribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year af-
ter the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release the
Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from
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that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the Docu-
ment). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent
to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for pub-
lic access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was
based on. These may be placed in the “History” section. You may
omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the
version it refers to gives permission.
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K. For any section Entitled “Acknowledgements” or “Dedications”, Pre-
serve the Title of the section, and preserve in the section all the sub-
stance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not
be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or
to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in
the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—for
example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and
a passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through arrangements
made by) any one entity. If the Document already includes a cover text for
the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
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endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”; like-
wise combine any sections Entitled “Acknowledgements”, and any sections
Entitled “Dedications”. You must delete all sections Entitled “Endorse-
ments”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License
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into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invari-
ant Sections with translations requires special permission from their copy-
right holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original
version will prevail.
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If a section in the Document is Entitled “Acknowledgements”, “Ded-
ications”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License
“or any later version” applies to it, you have the option of following the
terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation.
If the Document does not specify a version number of this License, you
may choose any version ever published (not as a draft) by the Free Software
Foundation.
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